

Concretely Efficient (Constant Round) Protocol for

General Secure Multiparty Computation With an

Active Adversary

Avishay Yanay

Submitted in partial fulfillment of the requirements for the Master's

Degree in the Department of Computer Science, Bar-Ilan University

Ramat-Gan, Israel 2015

Concretely Efficient (Constant Round) Protocol for

General Secure Multiparty Computation With an

Active Adversary

Avishay Yanay

Submitted in partial fulfillment of the requirements for the Master's

Degree in the Department of Computer Science, Bar-Ilan University

Ramat-Gan, Israel 2015

This work was carried out under the supervision of

Professor Yehuda Lindell and Professor Benny Pinkas

Department of Computer Science, Bar-Ilan

Efficient Constant Round Multi-Party Computation

Combining BMR and SPDZ

Avishay Yanay

July 15, 2015

ii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 General Background . 1

1.2 Work Structure . 5

1.3 Previous Works . 5

1.3.1 Yao’s two-party protocol ([Yao82]) . 5

1.3.2 The GMW methodology ([GMW87] . 7

1.3.3 The BMR constant-round protocol ([BMR90]) 12

1.3.4 The SPDZ protocol . 15

1.4 Our Results . 19

1.4.1 Correctness in Offline Phase . 20

1.4.2 Forcing consistency of inputs . 22

1.4.3 Finite field optimization of BMR . 22

2 Modified BMR Garbling 23

2.1 The Offline Functionality: preprocessing-I and preprocessing-II 26

2.2 Securely Computing FSFE in the Foffline-Hybrid Model 27

2.3 Implementing Foffline in the FMPC-Hybrid Model . 27

3 The SPDZ Based Instantiation 33

3.1 Utilizing the SPDZ Protocol . 34

3.2 The Πoffline SPDZ based Protocol . 35

3.3 Circuit Complexity . 38

3.4 Expected Runtimes . 41

4 Security Proof 45

4.1 Security in the semi-honest model . 46

4.2 Security in the malicious model . 55

4.2.1 Correctness . 56

4.2.2 Emulation in the ideal model. 59

Bibliography 70

iii

A A Generic Protocol to Implement Foffline 71

iv

Abstract

Recently, there has been huge progress in the field of concretely efficient secure computation, even
while providing security in the presence of malicious adversaries. This is especially the case in the
two-party setting, where constant-round protocols exist that remain fast even over slow networks.
However, in the multi-party setting, all concretely efficient fully-secure protocols, such as SPDZ,
require many rounds of communication.
In this thesis, we present an MPC protocol that is fully-secure in the presence of malicious
adversaries and for any number of corrupted parties. Our construction is based on the
constant-round BMR protocol of Beaver et al., and is the first fully-secure version of that protocol
that makes black-box usage of the underlying primitives, and is therefore concretely efficient.
Our protocol includes an online phase that is extremely fast and mainly consists of each party
locally evaluating a garbled circuit. For the offline phase we present both a generic construction
(using any underlying MPC protocol), and a highly efficient instantiation based on the SPDZ
protocol. Our estimates show the protocol to be considerably more efficient than previous
fully-secure multi-party protocols.

v

vi

Acknowledgments

I would like to thank my supervisors, Prof. Yehuda Lindell and Prof. Benny Pinkas, for the
patient guidance, encouragement and advice they have provided throughout my time as their
student. I have been extremely lucky to have supervisors who cared so much about my work, and
who responded to my questions and queries so promptly.

vii

viii

Chapter 1

Introduction

1.1 General Background

In secure multiparty computation (MPC) a set of n parties wishes to distributively and securely

compute a joint functionality of their inputs f : ({0, 1}`)n → ({0, 1}m)n, that is, party Pi inputs

xi to the the functionality and receives back yi (where 1 ≤ i ≤ n, |xi| = `, |yi| = m). A secure

protocol π that allows the parties to compute f assumes that some of the parties are distrustful,

for instance, a distrustful player Pj tries to learn more than yj implicitly reveals.

A secure protocol must guarantee several properties:

• Privacy, meaning that the parties learn only their output and what implicitly could be

learned from it, but nothing else.

• Correctness, meaning that the output that the parties receive is correctly computed from

their inputs.

• Independence of inputs, meaning that the input that is chosen by each party is independent

of the other parties’ inputs.

In some settings a protocol may guarantee more properties such as

• Fairness, meaning that whenever the dishonest parties receive their outputs then the honest

parties receive their outputs too.

1

• Guaranteed output delivery, meaning that the honest parties receive their outputs regardless

of the dishonest parties’ behavior.

Through this methodology (i.e. definition by properties) we assume to know what strategy the

adversary chooses (i.e. what properties it would try to break), thus it is mandatory that we do

not define the security by a set of properties but rather give a thorough definition that captures

even strategies that are not on our mind at the moment. To this end, the security of a protocol is

formally defined by comparing the distribution of the outputs of all parties in the execution of the

protocol π to an ideal model where a trusted third party is given the inputs from the parties,

compute f and return the outputs. The idea is that if it is possible to simulate the adversary’s

view from the real execution of the protocol in the ideal model (when it only sees its input and

output), then it follows that the adversary cannot do in the real execution anything that is

impossible in the ideal model, and hence the protocol is said to be secure.

In MPC we usually consider the capability of the adversary, i.e. what the adversary is allowed (or

is able) to do in order to harm the security of the protocol; the main types of adversaries are

semi-honest (also called honest but curious) who follow the protocol specification but tries to

learn more than allowed by inspecting the transcript, and malicious who attempts to deviate from

the specified protocol in order to break the security (e.g. send modified or new messages that

have not been specified by the protocol). There are other properties associated with adversaries

such as static adversary - who corrupts a set of parties before the execution of the protocol

begins; adaptive adversary - who may corrupt different parties during the execution of the

protocol; honest majority refers to an adversary who may corrupt less than half of the parties and

dishonest majority refers to an adversary who can corrupt arbitrary number of parties (it is

obvious that a secure two-party protocol is secure in the model of dishonest majority). It is worth

to note that we consider the corrupted parties as if they are controlled by a single external

adversary and thus their behaviour during the protocol could be coordinated to achieve the best.

2

Malicious behaviour

There are several types of malicious behaviours that are unavoidable even in the ideal model: the

adversary might corrupt a party so it does not input its original input value x to the protocol but

rather uses a modified input x′ 6= x; it could instruct the corrupted party to output a value y′

that is different from the output y given from the trusted party (that value y′ might be the

output of any probabilistic polynomial time algorithm operating on the adversary’s random tape,

set of inputs and all the messages it have seen so far); last, the adversary might instruct a

corrupted party to abort (e.g. shut himself down) before or after any step of the protocol (even

before the protocol has begun). In a real execution, this last type of behaviour might cause all

parties to abort, or otherwise, there is some recovery mechanism that allows the other parties to

keep computing the functionality. It had been studied ([Cle86]) that in a dishonest majority

model, if the adversary wish to abort the protocol, it implies that there exist no recovery

mechanism (still, there could be a mechanism that identifies the corrupted party that caused the

premature abortion, this is called identified abortion).

Initial Solutions

The first solution to the two-party problem was introduced by Yao [Yao82] and was proved to be

secure for the semi-honest model only, however, Yao’s protocol was extended to the malicious

model by Lindell and Pinkas [LP07] via the ”Cut and Choose” method. Goldreich, Micali and

Wigderson [GMW87] presented protocols for both the two-party and multi-party cases which are

secure in the semi-honest model, and a method to “compile” a protocol such that the resulted

protocol would be secure even in the malicious model.

These general solutions prove that secure multi-party computation is feasible. However, for many

years, both protocols were considered to be inefficient - in particular, for the malicious adversary

case - and thus far from being used in practice. As secure computation moves from theory to

practice, there are two approaches to deal with the inefficiency problem. The first approach

attempts to tailor solutions to specific problems instead of the general solutions. The second

approach seeks ways to improve the general solution and reduce the gap between the protocols

3

performance and the real world.

Parameters

Among the parameters by which we analyze a secure computation protocol there are the

computational complexity which, as usual, considers the amount of instructions that the parties

have to execute in order to achieve their outputs; round complexity which considers the number of

communication rounds, where a communication round is a state in the protocol in which the

party sends/receives one message; and message complexity which consider the amount of

information that is sent during the protocol execution in order to accomplish the computation. In

practice, the overhead time wasted for opening/closing a communication channel and sending a

message (especially in a wide area networks) is relatively large, hence, we are interested in

protocols that have a minimum number of communication rounds. Although the fastest protocols

today [DPSZ12, NNOB12] are fast in terms of computational complexity, they have a bottleneck

when the depth of the circuit is large because they require the parties to communicate for every

multiplication gate in the circuit, which makes the round complexity equal to the circuit’s depth.

Performance Improvements

Bar-Ilan and Beaver [BB89] were the first to investigate reducing the round complexity for secure

function evaluation. They exhibited a non-cryptographic method that always saves a logarithmic

factor of rounds (logarithmic in the total length of the players’ inputs), while the message

complexity grows only by a polynomial factor. Alternatively, they showed that the number of

rounds can be reduced to a constant, but at the expense of an exponential blowup in the message

sizes. Beaver, Micali and Rogaway [BMR90] proved that it is possible to achieve a constant round

protocol while preserving the polynomial message complexity. Their protocol is considered as a

direct generalization of Yao’s protocol with respect to the way the parties distributively garble

the circuit.

In the following we overview few of the classic works, including Yao’s protocol for the two-party

case, the GMW approach for both the two-party and the multi-party cases and the BMR

4

constant round protocol in the multi-party case, along with an overview of the current state of the

art solutions to the multi-party and dishonest majority case ([DPSZ12]).

1.2 Work Structure

We review the most known and related works in the field in section 1.3 and summarize our

improvements in section 1.4.

In chapter 2 we present our modification to the oroginal BMR protocol and present our general

protocol, in the Foffline-hybrid model, that can utilize any MPC protocol for arithmetic circuits as

a subprocedure.

We then present our specialization of the previous protocol to the case of utilizing the SPDZ

[DPSZ12] protocol as the underlying MPC protocol in chapter 3. This enables further

optimizations which are not available in a generic MPC protocol, and thus enables an even more

efficient evaluation.

In chapter 4 we give a full proof of security, which is achieved by a reduction to the original BMR

protocol.

1.3 Previous Works

1.3.1 Yao’s two-party protocol ([Yao82])

Suppose that two parties P1 and P2, having private inputs x and y wish to obtain the value of a

known two-argument function evaluated on them, that is, we consider functionalities of the form

(x, y) 7→ (f(x, y), f(x, y)) (this does not necessarily mean that both parties learn the same output,

it might be that the output is composed of two encrypted values where each party can decrypt

only one of them). Further suppose that the parties agreed on and hold a boolean circuit that

computes the functionality f . Note that in Yao’s solution the roles of the two parties are not

symmetric, i.e. they have different set of instructions to follow, also, recall that this protocol is

secure only in the semi-honest model. The idea is that P1 creates a garbled form of the circuit

such that P2 can propagate encrypted values through it and obtain the output in the clear, while

5

all intermediate values remain secret. The protocol is composed of the following phases:

1. Garbling the circuit. This is done by P1. For every wire w in the circuit two random

keys k0
w and k1

w are chosen, where k0
w corresponds to the value 0 passing through that wire

and k1
w corresponds to the value 1 passing through that wire. The idea is that when P2

obtains one of the keys then it cannot tell whether it corresponds to the value 0 or 1 since

both the keys are random and taken from the same distribution.

Then, P1 separately garbles each gate: let g : {0, 1} × {0, 1} → {0, 1} be the boolean

function of gate g, wires w1 and w2 be the input wires to the gate and w3 be the output wire

of the gate (i.e. k0
1 and k1

1 are associated with wire w1 and so on). P1 computes 4 ciphertexts

such that each one of them corresponds to one possibility of input pair for wires (w1, w2),

each ciphertext is computed by double encrypting the appropriate key of wire w3 using the

keys that correspond to the input pair of (w1, w2). For instance, for input pair (0, 1) the key

of wire w3 that is encrypted is k
g(0,1)
3 and the keys used to encrypt it are k0

1 and k1
1 (i.e. the

0-key for wire 0 and 1-key for wire 1). The ciphertext that are computed for gate g are:

c0,0 = Ek0
1

(
Ek0

2
(k
g(0,0)
3)

)
c0,1 = Ek0

1

(
Ek1

2
(k
g(0,1)
3)

)
c1,0 = Ek1

1

(
Ek0

2
(k
g(1,0)
3)

)
c1,1 = Ek1

1

(
Ek1

2
(k
g(1,1)
3)

)
where E is the encryption algorithm from an encryption scheme (G,E,D) that is

indistinguishable for multiple encryptions, moreover, the scheme should have elusive

efficiently verifiable range (details in [LP09]), meaning that the party that decrypt can

easily determine whether the given value is a legit ciphertext computed using a given key.

This way, if P2 holds the key that corresponds to value b1 for wire w1 (i.e. kb1w1
) and the key

kb2w2
for wire w2, then, using the table above it can first tell which entry from the table is a

legit ciphertext computed from the keys kb1w1
, kb2w2

and then, using that entry, obtain the key

that corresponds to the value g(b1, b2), i.e. k
g(b1,b2)
3 , without revealing any of the other three

values. After computing the four entries, P1 randomly shuffles them before handing it to P2

so P2 wouldn’t be able to conclude what are the values of the input wires from the position

6

of the legit ciphertext.

2. Sending the garbled circuit. The first player P1 provides P2 with the followings:

• Garbled circuit. That it the set of all garbled gates (i.e. 4-entry tables) that computed

before.

• Input keys. The keys that corresponds to the input bits of the input of P1, for instance,

if wire w is an input wire of P1 and the input bit that it wants to evaluate the circuit

with is b then P1 sends P2 the key kbw, otherwise, it sends kb−1
w .

• Translation of output wires. To allow P2 to evaluate the circuit and achieve the output

in the clear, it needs a translation from keys to bits, that is, for every circuit-output

wire w, P1 sends the ordered pairs (k0
w, 0) and (k1

w, 1).

3. Oblivious transfer. In order to evaluate the circuit, P2 has to obtain the keys that

correspond to its input as well (in the previous step it obtained the keys that correspond to

P1’s inputs), then, P2 asks those keys from P1. Obviously P1 must not learn what keys P2

asks and the transfer should not be executed in a simple manner, this is achieved using a

1-out-of-2 Oblivious Transfer. That is, for every circuit-input wire w that belongs to P2 the

parties securely computes the functionality ((k0
w, k

1
w), b) 7→ (λ, kbw) where b ∈ {0, 1} and λ is

the empty string. That is P2 enters the index of the keys that it needs and eventually

obtains that key while P1 enters both keys and learn nothing from the execution.

4. Locally evaluating the garbled circuit. The party P2 evaluate the circuit gate-by-gate,

starting from the circuit-input, for which it knows one key per wire, toward the circuit

output, for which it knows the translation from keys to actual bits, thus P2 obtains the

output value of the circuit, and sends it to P1.

1.3.2 The GMW methodology ([GMW87]

In contrast to Yao’s solution (that is based on boolean circuits), the GMW approach is based on

arithmetic circuits. The protocol begins in a step where each party obtains a share of the value

that is associated with each circuit-input wires, i.e. for the secret value s associated with wire a

7

the parties P1, . . . , Pn obtain the shares a1, . . . , an where sa = a1 + . . .+ an. Recall that

arithmetic circuits are composed of addition and multiplication gates (the operations are done

over F2). Suppose that the parties hold shares for the values associated with wires a and b that

enter to an addition gate g (i.e. the secrets sa and sb) and want to obtain shares to the secret

value associated with g’s output wire c (i.e. they want to obtain shares to sc), then each party Pi

only needs to add its own shares ai + bi and the result is a share to sc. That is, if

sa = a1 + . . .+ an and sb = b1 + . . .+ bn then sc = sa + sb = a1 + . . .+ an + b1 + . . .+ bn.

Obtaining shares to an output wire of a multiplication gate is more challenging though. First

consider the two-party case and later the multiparty case:

Two-party case. Parties P1 and P2 holds the shares (a1, b1) and (a2, b2) respectively, such that

a = a1 + a2, b = b1 + b2 and wants to obtain shares (c1, c2) such that a · b = c = c1 + c2. This is

done using a 1-out-of-4 Oblivious Transfer in the following manner:

• Party Pi holds (ai, bi) ∈ {0, 1} × {0, 1}, for i = 1, 2.

• Party P1 uniformly selects c1 ∈ {0, 1}

• The parties compute the functionality ((a1, b1, c1), (a2, b2)) 7→ (λ, fa2,b2(a1, b1, c1)) where

fa,b(x, y, z) = z + (x+ a) · (y + b). They privately compute that functionality by a 1 out of 4

OT such that P1 is the sender and sets its input to be

(
f0,0(a1, b1, c1) , (f0,1(a1, b1, c1)) , f1,0(a1, b1, c1) , f1,1(a1, b1, c1)

)
and P2 is the receiver and sets its input to be 1 + 2a2 + b2 ∈ {1, 2, 3, 4}. It is easy to see that

the computation is correct:

P2’s input, i.e. (a2, b2) Receiver’s inputs in OT 4
1 Receiver’s output in OT 4

1

(0, 0) 1 c1 + a1b1

(0, 1) 2 c1 + a1 · (b1 + 1)

(1, 0) 3 c1 + (a1 + 1) · b1

(1, 1) 4 c1 + (a1 + 1) · (b1 + 1)

• Party P1 outputs c1 whereas Party P2 outputs the result obtained from the OT 4
1 execution.

8

The security of the entire protocol (i.e. distributed evaluation of an arithmetic circuit over a finite

field F2) is reduced to the security of the OT 1
4 protcol, which is based on the existence of family of

enhanced trapdoor permutations. Note that the initial distribution of the shares is done in the

obvious manner, i.e. party that holds the secret s ∈ {0, 1} shares it by choosing random bit from

0, 1, denoted by s2, and hands it to the other party, then the party sets its own share to be

s1 = s− s2.

Multiparty case. Here we again deal with the multiplication problem, but in contrast to the

two-party case, here there is no trivial security reduction to the OT 1
4 . Consider the case where the

parties P1, . . . , Pn holds shares to the secrets a and b, that is, player Pi holds (ai, bi) such that

a =
∑n

i=1 ai and b =
∑n

i=1 bi. The players wish to obtain shares to the secret c such that

c =
∑n

i=0 ci = a · b = (
∑n

i=1 ai) · (
∑n

i=1 bi), that is, player Pi obtains ci. GMW showed a protocol

(distributed evaluation of an arithmetic circuit over F2 in the multiparty case) which its security

can be reduced to the security of a the two-party case (which in turn is based on the existence of

a family of enhanced trapdoor permutations). The idea is as follows:

(
m∑
i=1

ai) · (
m∑
i=1

bi) =
m∑
i=1

aibi +
∑

1≤i≤j≤m
(aibj + ajbi)

= (2−m) ·
m∑
i=1

aibi +
∑

1≤i≤j≤m
(ai + aj) · (bi + bj)

= m ·
m∑
i=1

aibi +
∑

1≤i≤j≤m
(ai + aj) · (bi + bj)

where the last equality (i.e. the transition from (2−m) to m) stems from the fact the the

computation is over F2. Note that each player Pi can locally compute the first argument of the

last equation, while the computation of the second term requires m− i invocations of the

two-party computation described above, one invocation per each player Pj where j ≥ i. The

protocol goes as follows:

• Inputs. Party Pi holds (ai, bi) ∈ {0, 1} × {0, 1} for i = 1, . . . ,m.

• Each pair of parties Pi and Pj where i < j invoke the two-party functionality described

above, party Pi provides the input (ai, bi) and receives the value ci,ji as output while party

9

Pj provides the input (aj , bj) and receives the output ci,jj . From the definition of that

functionality it follows that ci,ji + ci,jj = (ai + aj) · (bi + bj).

• Party Pi sets ci = maibi +
∑

j 6=i c
i,j
i (it is obvious that maibi = 0 if m is even and

maibi = aibi otherwise).

• Each party outputs ci.

Malicious adversary. So far the the descriptions above dealt with semi-honest adversary. The

GMW approach uses a compiler that is given a multi-party protocol that is secure under a

semi-honest adversary and outputs a protocol that is secure under the malicious protocol, the role

of the compiler is to wrap up each computation step performed by a party into a step in which

the party must be able to prove that it performed the computation correctly. If the proof failed

then the other parties knows that the first party has cheated and abort the execution. Note that

in this approach, one malicious party might cause early abort of the entire execution of the

protocol (as mentioned above, this is unavoidable with dishonest majority protocols for general

functionalities; however GMW presented another solution, that we don’t discuss here, for a model

with honest majority where the malicious adversary cannot cause an early abort, that is, the

honest party can emulate the parties that aborted and continue the execution with some default

values). Before describing the structure of the compiled protocol it is important to enumerate

what a malicious party may do (beyond whatever a semi-honest party can do):

1. Modify inputs. A malicious party may enter the actual execution with an input different

from the one that it originally given. The compiler has to guarantee the independence of

inputs property mentioned in the introduction, that is, the actual input that the party

enters is independent of any of the inputs of the honest parties (it might, however, depend

on the inputs of the other malicious parties).

2. Non-uniform random tape. A malicious party may enter the actual execution with a

random tape that is not uniformly distributed. The compiler must prevent this behaviour,

i.e. force the parties to use a uniformly distributed random tape.

10

3. Sending unspecified messages. A malicious party may send messages different from

what is required in the specification of the protocol. The compiler has to force the malicious

player to compute the next message correctly (using the previous messages that it received

and its correct uniformly distributed random tape), while in case that the party indeed

cheats the other parties will be notified and abort the execution. (In the general case, this

neither guarantees output delivery nor fairness, that is, the malicious party might cause an

abort right after learning the output and before the honest parties learned it. There are

works, however, that show that it is possible to achieve fairness for some specific

functionalities, [GHKL08] for example).

The basic structure of the protocol generated by the compiler is follows:

• Input commitment. Each party commits to its input bits, it proves, in addition, that it

actually knows the value to which it has committed. It follows that each party commits to a

value that is essentially independent of the values committed to by the other parties.

• Coin tossing. In this phase each party obtains a uniformly distributed random tape, which

will assist in the emulation (transforming) the semi-honest secure protocol into the

malicious secure one. While each party obtains its own random tape and a decommitment

information, the other parties obtain a commitment to this value. This way, in the protocol

emulation phase (below) the party could prove, using an NP-statement, that the

computation is done according a honest use of the uniform random tape.

• Protocol emulation. The parties use authenticated-computation in order to emulate each

step of the original protocol (i.e. the protocol that is secure under a semi-honest adversary).

The emulation guarantees, using invocations of Zero-Knowledge proofs, that the message

sent by one party is indeed the next message that should be sent with regard to the party’s

input to the protocol, its random tape, and the messages that it received so far (in addition

to decommitments information) along with the commitment information that the other

parties holds. That information is converted into an NP-statement and it has been shown in

[GMW86] that it is possible to prove every NP-statement in Zero-Knowledge.

11

1.3.3 The BMR constant-round protocol ([BMR90])

Here we outline the protocol of Beaver, Micali and Rogaway for semi-honest adversaries. (BMR

also have a version for malicious adversaries. However, it requires an honest majority and is also

not concretely efficient.) The protocol is comprised of an offline-phase and an online-phase. During

the offline-phase the garbled circuit is created by the players, while in the online-phase a matching

set of garbled inputs is exchanged between the players and each of them evaluates the garbled

circuit locally. The protocol is based on the following data items:

Seeds and superseeds: Two random seeds are associated with each wire in the circuit by each

player. We denote the 0-seed and 1-seed that are chosen by player Pi (where 1 ≤ i ≤ n) for wire

w as siw,0 and siw,1 (where 0 ≤ w < W and W is the number of wires in the circuit and

siw,j ∈ {0, 1}κ where κ is the security parameter). During the garbling process the players produce

two superseeds for each wire, where the 0-superseed and 1-superseed for wire w are a simple

concatenation of the 0-seeds and 1-seeds chosen by all the players, namely, Sw,0 = s1
w,0‖ · · · ‖snw,0

and Sw,1 = s1
w,1‖ · · · ‖snw,1 where ‖ denotes concatenation. Note that Sw,j ∈ {0, 1}L where

L = n · κ.

Garbling wire values: For each gate g which calculates the function fg (where

fg : {0, 1} × {0, 1} → {0, 1}), the garbled gate of g is computed such that the superseeds

associated with the output wire are encrypted (via a simple XOR) using the superseeds associated

with the input wires, according to the truth table of fg. Specifically, a superseed

Sw,0 = s1
w,0‖ · · · ‖snw,0 is used to encrypt a value M of length L by computing M

⊕n
i=1G(siw,0),

where G is a pseudo-random generator stretching a seed of length κ to an output of length L.

This means that every one of the seeds that make up the superseed must be known in order to

learn the mask and decrypt.

Masking values: Using random seeds instead of the original 0/1 values does not hide the

original value if it is known that the first seed corresponds to 0 and the second seed to 1.

Therefore, an unknown random masking bit, denoted by λw, is assigned to wire w (for

0 ≤ w < W). These masking bits remain unknown to the players during the entire protocol,

12

thereby preventing them from knowing the real values ρw that pass through the wires. The values

that the players do know are called the external values Λw. An external value is defined to be the

exclusive-or of the real value and the masking value; i.e., Λw = ρw ⊕ λw. When evaluating the

garbled circuit the players only see the external values of the wires, which are random bits that

tell nothing about the real values, unless they know the masking values. We remark that each

party Pi is given the masking value associated with its input. Thus, it can compute the external

value itself (based on its actual input) and can send it to all other parties.

BMR garbled gates and circuit: We can now define the BMR garbled circuit, which consists

of the set of garbled gates, where a garbled gate is defined via a functionality that maps inputs to

outputs. Let g be a gate with input wires a, b and output wire c. Each party Pi (for 1 ≤ i ≤ n)

inputs the seeds sia,0, s
i
a,1, s

i
b,0, s

i
b,1, s

i
c,0, s

i
c,1. Thus, the superseeds produced are Sa,0, Sa,1, Sb,0,

Sb,1, Sc,0, Sc,1, where each superseed is given by Sα,β = s1
α,β‖ · · · ‖snα,β. In addition, Pi also inputs

the output of a pseudo-random generator G applied to each of its seeds, along with its shares of

the masking bits, i.e. λia, λ
i
b, λ

i
c.

The output is the garbled gate of g which comprises of a table of four ciphertexts, each of them

encrypting either Sc,0 or Sc,1. The property of the gate construction is that given one superseed

for a and one superseed for b it is possible to to decrypt exactly one ciphertext, and reveal the

appropriate superseed for wire c (based on the values on the input wires and the gate type). The

inputs and outputs of the process which garbles a single gate follows:

Let κ denote the security parameter, and let G : {0, 1}κ → {0, 1}2nκ be a pseudo-random

generator. Denote the first L = nκ bits of the output of G by G1, and the last nκ bits of the

output of G by G2. Assume that the gate g computing fg : {0, 1} × {0, 1} → {0, 1} has inputs

wires a, b and output wire c.

Inputs:

1. Seeds: s1
a,0, . . . , s

n
a,0, s1

a,1, . . . , s
n
a,1, s1

b,0, . . . , s
n
b,0, s1

b,1, . . . , s
n
b,1, s1

c,0, . . . , s
n
c,0, s1

c,1, . . . , s
n
c,1

where each seed is in {0, 1}κ.

2. PRG output: The output of G applied to each of the seeds above, such that the first n · κ

13

bits of the output are denoted by G1 and the other n · κ bits by G2.

3. Masking bits. Bits λa, λb and λc.

Outputs: The garbled gate of g is the following four ciphertexts Ag, Bg, Cg, Dg (in this order

that is determined by the external values):

Ag = G1(s1
a,0)⊕ · · · ⊕G1(sna,0)⊕G1(s1

b,0)⊕ · · · ⊕G1(snb,0)

⊕


Sc,0 if fg(λa, λb) = λc

Sc,1 otherwise

Bg = G2(s1
a,0)⊕ · · · ⊕G2(sna,0)⊕G1(s1

b,1)⊕ · · · ⊕G1(snb,1)

⊕


Sc,0 if fg(λa, λ̄b) = λc

Sc,1 otherwise

Cg = G1(s1
a,1)⊕ · · · ⊕G1(sna,1)⊕G2(s1

b,0)⊕ · · · ⊕G2(snb,0)

⊕


Sc,0 if fg(λ̄a, λb) = λc

Sc,1 otherwise

Dg = G2(s1
a,1)⊕ · · · ⊕G2(sna,1)⊕G2(s1

b,1)⊕ · · · ⊕G2(snb,1)

⊕


Sc,0 if fg(λ̄a, λ̄b) = λc

Sc,1 otherwise

The BMR Online Phase: In the online-phase the players only have to obtain one superseed for

every circuit-input wire, and then every player can evaluate the circuit on its own, without

interaction with the rest of the players. The online-phase is described by the following two steps:

Step 1 – send values:

1. Every player Pi broadcasts the external values on the wires associated with its input.

14

At the end of this step the players know the external value Λw for every circuit-input

wire w. (Recall that Pi knows λw and so can compute Λw based on its input.)

2. Every player Pi broadcasts one seed for each circuit-input wire, namely, the Λw-seed.

At the end of this step the players know the Λw-superseed for every circuit-input wire.

Step 1 – evaluate circuit: The players evaluate the circuit from the bottom up, such that to

obtain the superseed of an output wire of the gate, they use Ag if the external values of g’s

input wires are Λa,Λb = (0, 0), use Bg if Λa,Λb = (0, 1), Cg if Λa,Λb = (1, 0) and Dg if

Λa,Λb = (1, 1) where a, b are the input wires. (see the original paper for more details).

Correctness: We explain now why the conditions for masking Sc,0 and Sc,1 are correct. The

external values Λa,Λb indicate to the parties which ciphertext to decrypt. Specifically, the parties

decrypt Ag if Λa = Λb = 0, they decrypt Bg if Λa = 0 and Λb = 1, they decrypt Cg if Λa = 1 and

Λb = 0, and they decrypt Dg if Λa = Λb = 1.

We need to show that given Sa,Λa and Sb,Λb , the parties obtain Sc,Λc . Consider the case that

Λa = Λb = 0 (note that Λa = 0 means that λa = ρa, and Λa = 1 means that λa 6= ρa, where ρa is

the real wire value). Since ρa = λa and ρb = λb we have that fg(λa, λb) = fg(ρa, ρb). If

fg(λa, λb) = λc then by definition fg(ρa, ρb) = ρc, and so we have λc = ρc and thus Λc = 0. Thus,

the parties obtain Sc,0 = Sc,Λc . In contrast, if fg(λa, λb) 6= λc then by definition fg(ρa, ρb) 6= ρc,

and so we have λc = ρ̄c and thus Λc = 1. A similar analysis show that the correct values are

encrypted for all other combinations of Λa,Λb.

1.3.4 The SPDZ protocol

Damg̊ard, Pastro, Smart and Zakarias (written [DPSZ12] and pronounced speeds) recently

presented a practical solution to the multi-party secure computation problem in the dishonest

majority case (with a malicious adversary). Their solution is based on the GMW paradigm, and

as a result, requires communication rounds for every multiplication gate in the arithmetic circuit

(that computes the functionality). The most notable changes from the GMW protocol are:

• The arithmetic circuit C which computes the functionality f is defined over any finite field

15

Fp rather than over F2 in GMW.

• Multiplication gates require communication rounds but unlike the GMW solution which

achieves that by invoking a two-round protocol many times, the SPDZ solution computes

multiplication directly using Beaver triples (described below).

• In GMW every party has to prove that the message that it sends is indeed the correct one,

and does so using a zero-knowledge scheme to prove some NP-statement. In SPDZ the

parties share some global secret MAC key, which authenticates the secret values, and is

revealed to the players only at the end of the execution, thus, the effort of preserving

security is postponed to the end of the execution, and then it becomes a very easy task.

The SPDZ protocol works in the preprocessing model, i.e. the expensive part of the computation

is executed in a preprocessing phase while the lightweight part is executed in the online phase. In

the offline (preprocessing) phase the parties neither know the circuit nor their inputs to the

functionality which will be computed in the online phase. They only prepare the raw materials

that are used later (specifically, they distributively generate the Beaver triples). In the online

phase the parties distributively evaluate the circuit in a GMW-manner; that is, locally evaluating

the addition gates and invoking communication rounds for evaluating multiplication gates. As in

GMW, they start from the circuit-input wires and complete the evaluation in the circuit-output

wires in which they reconstruct the secret (to reveal the actual output).

In the following we describe the ideas in the SPDZ solution: first we present how the parties

evaluate the arithmetic circuit (i.e. the online phase) given the existence of a trusted dealer and

later we describe how to implement that trusted dealer (i.e. the offline phase).

To begin with, assume that each party holds an additive share to a global secret MAC key

α ∈ Fp, that is, player Pi holds αi where α =
∑n

i=1 αi; secondly assume that each party holds an

additive share to the input of every player, for instance, let x be the input of party Pi to the

functionality, then, every party Pj holds the share xj such that x =
∑n

j=1 xj . Moreover, let

16

γ(x) = α · (δ + x) be the MAC on x (for some public constant δ); then every party Pj holds the

share γ(x)i such that γ(x) =
∑n

j=1 γ(x)j = α · (δ + x); every such shared value x is denoted by

[x]; finally, we assume that the parties have an access to a shared triples [a],[b],[c] such that

a · b = c. All the aforementioned values are produced using the aid of the trusted dealer.

Online phase. The parties distributively evaluate the circuit. That is, they begin from the

circuit-input wires, evaluating the gates one after the other, until they reach the shares of the

circuit-output wires. Given a sharing [x], [y] of the input wires of a gate g which computes either

the addition or the multiplication operation, we now show how to obtain a sharing [z] of the

output wire.

• Addition. The sharing [z] = [x+ y] is obtained without any interaction, i.e. only local

computation is required. That is, assume that player Pi holds (δx, xi, γ(x)i) and

(δy, yi, γ(y)i), then, Pi computes (δz, zi, γ(z)i) = (δx + δy, xi + yi, γ(x)i + γ(y)i). Correctness

follows from

n∑
i=1

(γ(x)i + γ(y)i) =

n∑
i=1

γ(x)i +

n∑
i=1

γ(y)i = α(x+ δx) + α(y + δy) = α(x+ y + δz) = γ(z)

This ability of easily adding a public value is the reason for the public modifier δ in the

definition of the shares.

• Multiplication. Here, in order to obtain sharing for [z] = [x · y] the parties have to interact

as follows:

1. Use a Beaver triple, i.e. player Pi holds (ai, γ(a)i), (bi, γ(b)i), (ci, γ(c)i) such that

a · b = c.

2. Partially open [x]− [a] = [x− a] so everyone obtains ε = x− a. Note that partially

opening the secret [s] means that the parties reveal si for i = 1, . . . , n but not γ(s)i

since the latter would reveal the MAC key α, which is not desirable.

3. Partially open [y]− [b] = [y − b] so everyone obtains ρ = y − b.

4. Locally compute the sharing [z] by [z] = [c] + ε · [b] + ρ · [a] + ε · ρ.

17

Note that given a sharing [s] it is easy to obtain a sharing [s+ η] for some constant η;

that is, given [s] =
(
δs, (s1, . . . , sn), (γ(s)1, . . . , γ(s)n)

)
the sharing for s+ η is

[s+ η] =
(
δs − η, (s1 + η, . . . , sn), (γ(s)1, . . . , γ(s)n)

)
thus, when reconstructing the MAC on s the parties compute∑n

i=1 γ(s)i
α − (δs − η) = s+ δs − δs + η = s+ η

5. Correctness follows from:

c+ ε · b+ ρ · a+ ε · ρ = ab+ (x− a)b+ (y − b)a+ (x− a)(y − b)

= ab+ (xb− ab) + (ya− ab) + (xy − xb− ya+ ab)

= xy

Offline phase. The purpose of this phase is to prepare the Beaver’s triples [a], [b], [c] which are

used in the online phase. This phase assumes an Fully Homomorphic Encryption (FHE) scheme

with keys pk, sk where the message space is Fp, so given c1 = Epk(m1) and c2 = Epk(m2) we have

Dsk(c1 + c2) = m1 +m2 and Dsk(c1 · c2) = m1 ·m2

where E and D are the encryption and decryption algorithms respectively. In addition, we require

that the scheme enables to share the secret key sk among n parties such that party Pi holds ski

and together, the parties can decrypt a ciphertext c by Dsk1,...,skn(c). Note that it is easy to

achieve the encryption of the MAC key α (which is used to obtain the authentication code of

some message as mentioned above), that is, the parties only broadcast the encryption of their

shares, i.e. Epk(αi), this way, using the additive homomorphic property each player holds Epk(α).

The description of generating Beaver’s triple [a], [b], [c] is divided to the following:

• Resharing a secret. Given an encryption of a secret cs = Epk(s), the parties want obtain the

sharing [s], i.e. shares si of the secret itself (not its encryption) such that s =
∑
si. This is

achieved by the following procedure:

18

1. Party Pi generates a random fi ∈ Fp and transmits cfi = Epk(fi)

2. All compute cs+f = cs +
∑
cfi .

3. Execute Dsk1,...,skn(cs+f) to obtain s+ f .

4. Party P1 sets s1 = (s+ f)− f1, the rest of the parties Pj (j 6= 1) sets sj = (−fj). It

follows that
∑n

i=1 si = s+ f −
∑n

i=0 fi = s+ f − f = s as required.

• Generating [a], [b]. Given a way to Reshare, it is possible to generate [a], [b] by the following

procedure:

1. Party Pi generate a random ai and transmits cai = Epk(ai).

2. All compute ca =
∑
cai .

3. All computes cαa = cα · ca (as mentioned above, the players holds cα.

4. Execute Reshare on ca and cαa (cαa is the MAC γ(a) with initial δa = 0).

The same is done to compute [b].

• Generating [c]. Recall that it is required that c = a · b. Given ca, cb the parties achieve [c] by:

1. All compute cc = cab = cacb.

2. Execute Reshare on cc so [c] is obtained.

Note that the offline phase is based on a FHE scheme which makes the computation expensive,

while in the online phase the parties execute only simple operations. Moreover, given a trusted

dealer which implements the offline phase then the resulting protocol is information theoretically

secure against up to n− 1 maliciously corrupted parties.

1.4 Our Results

In this paper, we provide the first concretely efficient constant-round protocol for the general

multi-party case, with security in the presence of malicious adversaries. There are two basic ideas

behind our construction:

19

• We use an efficient non-constant round protocol – with security for malicious adversaries –

to compute the gate tables of the BMR garbled circuit; and since the computation of these

tables is of constant depth, this step is constant round.

• More importantly, we observed that once we use such a protocol then the only damage that

the adversary can do is to change the reported wire values1 – but this is easily detectable by

the honest parties.

Although our basic generic protocol can be instantiated with any non-constant round MPC

protocol, we provide an optimized version that utilizes specific features of the SPDZ protocol

[DPSZ12].

1.4.1 Correctness in Offline Phase

In the offline phase of the BMR construction for the malicious model the parties have to prove

that the PRG results that they provide to the computation of the garbled circuit are computed

correctly (this step is not mentioned in Section 1.3.3 since we only described the BMR protocol

for the semi-honest case).

A crucial observation, resulting in a great performance improvement, shows that the parties are

not required to verify the correctness of the computations of the different tables (of the garbled

gates). Rather, validation of the correctness is an immediate byproduct of the online computation

phase, and therefore does not add any overhead to the computation.

In our general construction, the new constant-round MPC protocol consists of two phases. In the

first (offline) phase, the parties securely compute random shares of the BMR garbled circuit. If

this is done naively, then the result is highly inefficient since part of the computation involves

computing a pseudorandom generator or pseudorandom function multiple times for every gate.

By modifying the original BMR garbled circuit, we show that it is possible to actually compute

the circuit very efficiently. Specifically, each party locally computes the pseudorandom function as

needed for every gate (in our construction we use a pseudorandom function rather than a

1This values are the PRF result applied to the keys that are opened to the parties, this is thoroughly described
later.

20

pseudorandom generator), and uses the results as input to the secure computation. Our proof of

security shows that if a party cheats and inputs incorrect values then no harm is done, since it

can only cause the honest parties to abort (which is anyway possible when there is no honest

majority). Next, in the online phase, all that the parties need to do is reconstruct the single

garbled circuit, exchange garbled values on the input wires and locally compute the garbled

circuit. The online phase is therefore very fast.

In our concrete instantiation of the protocol using SPDZ [DPSZ12], there are actually three

separate phases, with each being faster than the previous. The first two phases can be run offline,

and the last phase is run online after the inputs become known.

• The first (slow) phase depends only on an upper bound on the number of wires and the

number of gates in the function to be evaluated. This phase uses Somewhat Homomorphic

Encryption (SHE) and is equivalent to the offline phase of the SPDZ protocol.

• The second phase depends on the function to be evaluated but not the function inputs; in

our proposed instantiation this mainly involves information theoretic primitives and is

equivalent to the online phase of the SPDZ protocol.

• In the third phase the parties provide their input and evaluate the function; this phase just

involves exchanging shares of the circuit and garbled values on the input wire and locally

computing the BMR garbled circuit.

We stress that our protocol is constant round in all phases since the depth of the circuit required

to compute the BMR garbled circuit is constant. In addition, the computational cost of preparing

the BMR garbled circuit is not much more than the cost of using SPDZ itself to compute the

functionality directly. However, the key advantage that we gain is that our online time is

extraordinarily fast, requiring only two rounds and local computation of a single garbled circuit.

This is faster than all other existing circuit-based multi-party protocols.

21

1.4.2 Forcing consistency of inputs

In our general construction of the protocol the parties generate the keys and masking values by

themselves (unlike in the construction with SPDZ, in which the keys and masking values are

generated by the functionality). This raises an issue in the BMR construction where the parties

invoke an independent instantiation of the underlying MPC protocol2 for every gate, for example:

let w be an output wire of gate g and an input wire to gate g′, thus, a corrupted party Pi might

input to the first invocation of the underlying MPC protocol (computing the garbled gate of g) its

share λiw of masking value which leads to a masking value λw, and to the second invocation

(computing the garbled gate of g′) a different share λiw which leads to a masking value λw.

We solve this potential for inconsistency by invoking the underlying functionality (SPDZ) only

once (that is, all the gates of the circuit C (which computes f) are garbled using a single big

arithmetic circuit), and still preserving the concurrency of the computation of the garbled circuit.

This way the parties input their keys to the functionality once and for all, hence, they are not

able to input inconsistent keys.

Note that above issue relates only to inconsistency with regard to shares of masking values and

not with keys or PRF results.; This is to the fact that for a given gate g with input wires a, b and

output wire c, in order to computed the garbled gate of g the parties provide the PRF results for

wires a, b and the keys for wire c, hence, they are not required to input the same value twice for

some wire.

1.4.3 Finite field optimization of BMR

In order to efficiently compute the BMR garbled circuit, we define the garbling and evaluation

operations over a finite field. A similar technique of using finite fields in the BMR protocol was

introduced in [BNP08] in the case of semi-honest security with an honest majority. In contrast to

[BNP08], our utilization of finite fields is carried out via vectors of field elements, and uses the

underlying arithmetic of the field as opposed to using very large finite fields to simulate integer

arithmetic. This makes our modification in this respect more efficient.

2Specifically, GMW is used in BMR construction.

22

Chapter 2

Modified BMR Garbling

In order to facilitate fast secure computation of the garbled circuit in the offline phase, we make

some changes to the original BMR garbling described in Section 1.3.3. First, instead of using

XOR of bit strings, and hence a binary circuit to instantiate the garbled gate, we use additions of

elements in a finite field, and hence an arithmetic circuit. This idea was used by [BNP08] in the

FairplayMP system, which used the BGW protocol [BGW88] in order to compute the BMR

circuit. Note that FairplayMP achieved semi-honest security with an honest majority, whereas

our aim is malicious security for any number of corrupted parties.

Second, we observe that the external values1 do not need to be explicitly encoded, since each

party can learn them by looking at its own “part” of the garbled value. In the original BMR

garbling, each superseed contains n seeds provided by the parties. Thus, if a party’s zero-seed is

in the decrypted superseed then it knows that the external value (denoted by Λ) is zero, and

otherwise it knows that it is one.

Naively, it seems that independently computing each gate securely in the offline phase is

insufficient, since the corrupted parties might use inconsistent inputs for the computations of

different gates. For example, if the output wire of gate g is an input to gate g′, the input provided

for the computation of the table of g might not agree with the inputs used for the computation of

the table of g′. It therefore seems that the offline computation must verify the consistency of the

1The external values (as denoted in [BNP08]) are the signals (as denoted in [BMR90]) observable by the parties when
evaluating the circuit in the online phase.

23

computations of different gates. This type of verification would greatly increase the cost since the

evaluation of the pseudorandom functions (or pseudorandom generator in the original BMR) used

in computing the tables needs to be be checked inside the secure computation. This means that

the pseudorandom function is not treated as a black box, and the circuit for the offline phase

would be huge (as it would include multiple copies of a subcircuit for computing pseudorandom

function computations for every wire). Instead, we prove that this type of corrupt behavior can

only result in an abort in the online phase, which would not affect the security of the protocol.

This observation enables us to compute each gate independently and model the pseudorandom

function used in the computation as a black box, thus simplifying the protocol and optimizing its

performance.

We also encrypt garbled values as vectors; this enables us to use a finite field that can encode

{0, 1}κ (for each vector coordinate), rather than a much larger finite field that can encode all of

{0, 1}n·κ. Due to this, the parties choose keys (for a pseudorandom function) rather than seeds for

a pseudorandom generator. The keys that Pi chooses for wire w are denoted kiw,0 and kiw,1, which

will be elements in a finite field Fp such that 2κ < p < 2κ+1. In fact we pick p to be the smallest

prime number larger than 2κ, and set p = 2κ + α, where (by the prime number theorem) we

expect α ≈ κ. We shall denote the pseudorandom function by Fk(x), where the key and output

will be interpreted as elements of Fp in much of our MPC protocol. In practice the function Fk(x)

we suggest will be implemented using CBC-MAC using a block cipher enc with key and block size

κ bits, as Fk(x) = CBC-MACenc(k (mod 2κ), x). Note that the inputs x to our pseudorandom

function will all be of the same length and so using naive CBC-MAC will be secure.

We interpret the κ-bit output of Fk(x) as an element in Fp where p = 2κ+α. Note that a mapping

which sends an element k ∈ Fp to a κ-bit block cipher key by computing k (mod 2κ) induces a

distribution on the key space of the block cipher which has statistical distance from uniform of

1

2

(
(2κ − α) ·

(
1

2κ
− 1

p

)
+ α ·

(
2

p
− 1

2κ

))
≈ α

p
≈ κ

2κ
.

The output of the function Fk(x) will also induce a distribution which is close to uniform on Fp.

In particular the statistical distance of the output in Fp, for a block cipher with block size κ, from

24

uniform is given by

1

2

(
2κ ·

(
1

2κ
− 1

p

)
+ α ·

(
1

p
− 0

))
=
α

p
≈ κ

2κ

(note that 1− 2κ

p = α
p). In practice we set κ = 128, and use the AES cipher as the block cipher

enc. The statistical difference is therefore negligible.

Functionality 1 (The SFE Functionality: FSFE).
The functionality is parameterized by a function f(x1, . . . , xn) which is input as a binary circuit Cf . The
protocol consists of three externally exposed commands Initialize, InputData, and Output and one
internal subroutine Wait.

Initialize: On input (init , Cf) from all parties, the functionality activates and stores Cf .

Wait: Waits on the adversary to return a GO/NO-GO decision. If the adversary returns NO-GO then
the functionality aborts.

InputData: On input (input , Pi, varid , xi) from Pi and (input , Pi, varid , ?) from all other parties, with
varid a fresh identifier, the functionality stores (varid , xi). The functionality then calls Wait.

Output: On input (output) from all honest parties the functionality computes y = f(x1, . . . , xn) and
outputs y to the adversary. The functionality then calls Wait. Only if Wait does not abort it
outputs y to all parties.

The goal of this paper is to present a protocol ΠSFE which implements the Secure Function

Evaluation (SFE) functionality of Functionality 1 in a constant number of rounds in the case of a

malicious dishonest majority. Our constant round protocol ΠSFE implementing FSFE is built in

the FMPC-hybrid model, i.e. utilizing a sub-protocol ΠMPC which implements the functionality

FMPC given in Functionality 2. The generic MPC functionality FMPC is reactive. We require a

reactive MPC functionality because our protocol ΠSFE will make repeated sequences of calls to

FMPC involving both output and computation commands. In terms of round complexity, all that

we require of the sub-protocol ΠMPC is that each of the commands which it implements can be

implemented in a constant number of rounds. Given this requirement our larger protocol ΠSFE

will be constant round.

25

Functionality 2 (The Generic Reactive MPC Functionality: FMPC).
The functionality consists of five externally exposed commands Initialize, InputData, Add, Multiply,
and Output, and one internal subroutine Wait.

Initialize: On input (init , p) from all parties, the functionality activates and stores p. All additions and
multiplications below will be mod p.

Wait: Waits on the adversary to return a GO/NO-GO decision. If the adversary returns NO-GO then
the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with
varid a fresh identifier, the functionality stores (varid , x). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod
p). The functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in
memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x ·
y mod p). The functionality then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present in memory), the function-
ality retrieves (varid , x) and outputs either (varid , x) in the case of i 6= 0 or (varid) if i = 0 to the
adversary. The functionality then calls Wait, and only if Wait does not abort then it outputs x
to all parties if i = 0, or it outputs x only to party i if i 6= 0.

In what follows we use the notation [varid] to represent the result stored in the variable varid by

the FMPC or FSFE functionality. In particular we use the arithmetic shorthands [z] = [x] + [y] and

[z] = [x] · [y] to represent the result of calling the Add and Multiply commands on the FMPC

functionality.

2.1 The Offline Functionality: preprocessing-I and preprocessing-II

Our protocol, ΠSFE, is comprised of an offline-phase and an online-phase, where the offline-phase,

which implements the functionality Foffline, is divided into two subphases: preprocessing-I and

preprocessing-II. To aid exposition we first present the functionality Foffline in Functionality 3. In

the next section, we present an efficient methodology to implement Foffline which uses the SPDZ

protocol as the underlying MPC protocol for securely computing functionality FMPC; while in

Appendix A we present a generic implementation of Foffline based on any underlying protocol

ΠMPC implementing FMPC.

In describing functionality Foffline we distinguish between attached wires and common wires: the

attached wires are the circuit-input-wires that are directly connected to the parties (i.e., these are

26

inputs wires to the circuit). Thus, if every party has ` inputs to the functionality f then there are

n · ` attached wires. The rest of the wires are considered as common wires, i.e. they are directly

connected to none of the parties.

preprocessing-I takes as input an upper bound W on the number of wires in the circuit, and an

upper bound G on the number of gates in the circuit. The upper bound G is not strictly needed,

but will be needed in any efficient instantiation based on the SPDZ protocol. In contrast

preprocessing-II requires knowledge of the precise function f being computed, which we assume is

encoded as a binary circuit Cf .

In order to optimize the performance of the preprocessing-II phase, the secure computation does

not evaluate the pseudorandom function F (), but rather has the parties compute F () and provide

the results as an input to the protocol. Observe that corrupted parties may provide incorrect

input values Fkix,j
() and thus the resulting garbled circuit may not actually be a valid BMR

garbled circuit. Nevertheless, we show that such behavior can only result in an abort. This is due

to the fact that if a value is incorrect and honest parties see that their key (coordinate) is not

present in the resulting vector then they will abort. In contrast, if their seed is present then they

proceed and the incorrect value had no effect. Since the keys are secret, the adversary cannot give

an incorrect value that will result in a correct different key, except with negligible probability.

This is important since otherwise correctness would be harmed. Likewise, a corrupted party

cannot influence the masking values λ, and thus they are consistent throughout.

2.2 Securely Computing FSFE in the Foffline-Hybrid Model

We now define our protocol ΠSFE for securely computing FSFE (using the BMR garbled circuit) in

the Foffline-hybrid model, see Protocol 1.

2.3 Implementing Foffline in the FMPC-Hybrid Model

At first sight, it may seem that in order to construct an entire garbled circuit (i.e. the output of

Foffline), an ideal functionality that computes each garbled gate can be used separately for each

27

Functionality 3 (The Offline Functionality – Foffline).
This functionality runs the same Initialize, Wait, InputData and Output commands as FMPC

(Functionality 2). In addition, the functionality has two additional commands preprocessing-I and
preprocessing-II, as follows.

preprocessing-I: On input (preprocessing-I,W,G), for all wires w ∈ [1, . . . ,W]:

• The functionality chooses and stores a random masking value [λw] where λw ∈ {0, 1}.
• For 1 ≤ i ≤ n and β ∈ {0, 1},

– The functionality stores a key of user i for wire w and value β, [kiw,β] where kiw,β ∈ Fp
– The functionality outputs [kiw,β] to party i by running Output as in functionality FMPC.

preprocessing-II: On input of (preprocessing-II, Cf) for a circuit Cf with at most W wires and G gates.

• For all wires w which are attached to party Pi the functionality opens [λw] to party Pi by
running Output as in functionality FMPC.

• For all output wires w the functionality opens [λw] to all parties by running Output as in
functionality FMPC.

• For every gate g with input wires 1 ≤ a, b ≤W and output wire 1 ≤ c ≤W .

– Party Pi provides the following values for x ∈ {a, b} by running InputData as in
functionality FMPC:

Fkix,0
(0‖1‖g), . . . , Fkix,0

(0‖n‖g) Fkix,0
(1‖1‖g), . . . , Fkix,0

(1‖n‖g)

Fkix,1
(0‖1‖g), . . . , Fkix,1

(0‖n‖g) Fkix,1
(1‖1‖g), . . . , Fkix,1

(1‖n‖g)

– Define the selector variables

χ1 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ2 =

{
0 if fg(λa, λb) = λc

1 otherwise

χ3 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ4 =

{
0 if fg(λa, λb) = λc

1 otherwise

– Set Ag = (A1
g, . . . , A

n
g), Bg = (B1

g , . . . , B
n
g), Cg = (C1

g , . . . , C
n
g), and Dg =

(D1
g , . . . , D

n
g) where for 1 ≤ j ≤ n:

Ajg =

(
n∑
i=1

Fkia,0
(0‖j‖g) + Fki

b,0
(0‖j‖g)

)
+ kjc,χ1

Bjg =

(
n∑
i=1

Fkia,0
(1‖j‖g) + Fki

b,1
(0‖j‖g)

)
+ kjc,χ2

Cjg =

(
n∑
i=1

Fkia,1
(0‖j‖g) + Fki

b,0
(1‖j‖g)

)
+ kjc,χ3

Dj
g =

(
n∑
i=1

Fkia,1
(1‖j‖g) + Fki

b,1
(1‖j‖g)

)
+ kjc,χ4

– The functionality stores the values [Ag], [Bg], [Cg], [Dg].

28

Protocol 1 (ΠSFE: Securely Computing FSFE in the Foffline-Hybrid Model).

On input of a circuit Cf representing the function f which consists of at most W wires and at most G
gates the parties execute the following commands.
Pre-Processing: This procedure is performed as follows

1. Call Initialize on Foffline with the smallest prime p in {2κ, . . . , 2κ+1}.
2. Call Preprocessing-I on Foffline with input W and G.

3. Call Preprocessing-II on Foffline with input Cf .

Online Computation: This procedure is performed as follows

1. For all input wires w for party Pi the party takes its input bit ρw and computes Λw = ρw⊕λw,
where λw was obtained in the preprocessing stage. The value Λw is broadcast to all parties.

2. Party i calls Output on Foffline to open [kiw,Λw
] for all its input wires w, we denote the

resulting value by kiw.

3. The parties call Output on Foffline to open [Ag], [Bg], [Cg] and [Dg] for every gate g.

4. Passing through the circuit topologically, the parties can now locally compute the following
operations for each gate g

• Let the gates input wires be labeled a and b, and the output wire be labeled c.

• For j = 1, . . . , n compute kjc according to the following cases:

– Case 1 – (Λa,Λb) = (0, 0): compute

kjc = Ajg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(0‖j‖g)

)
.

– Case 2 – (Λa,Λb) = (0, 1): compute

kjc = Bjg −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(0‖j‖g)

)
.

– Case 3 – (Λa,Λb) = (1, 0): compute

kjc = Cjg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(1‖j‖g)

)
.

– Case 4 – (Λa,Λb) = (1, 1): compute

kjc = Dj
g −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(1‖j‖g)

)
.

• If kic /∈ {kic,0, kic,1}, then Pi outputs abort. Otherwise, it proceeds. If Pi aborts it notifies
all other parties with that information. If Pi is notified that another party has aborted
it aborts as well.

• If kic = kic,0 then Pi sets Λc = 0; if kic = kic,1 then Pi sets Λc = 1.

• The output of the gate is defined to be (k1
c , . . . , k

n
c) and Λc.

5. Assuming party Pi does not abort it will obtain Λw for every circuit-output wire w. The
party can then recover the actual output value from ρw = Λw ⊕ λw, where λw was obtained
in the preprocessing stage.

29

gate of the circuit (that is, for each gate the parties provide their keysfor the output wire, the

PRF results applied to the keys of the input wires and shares of the masking values for all wires

associated with that gate). This is sufficient when considering semi-honest adversaries. However,

in the setting of malicious adversaries, this can be problematic since parties may input

inconsistent values. For example, the masking values λw that are common to a number of gates

(which happens when any wire enters more than one gate) need to be identical in all of these

gates. In addition, the pseudorandom function values may not be correctly computed from the

pseudorandom function keys that are input. In order to make the computation of the garbled

circuit efficient, we will not check that the pseudorandom function values are correct. However, it

is necessary to ensure that the λw values are correct, and that they are consistent between gates

(e.g., as in the case where the same wire is input to multiple gates). We achieve this by

computing the entire circuit at once, via a single functionality.

The cost of this computation is actually almost the same as separately computing each gate. The

single functionality receives λiw
2 from party Pi only once, regardless of the number of gates to

which w is input. Thereby consistency is immediate throughout, and this potential attack is

prevented. Moreover, the λw values are generated once and used consistently by the circuit,

making it easy to ensure that the λ values are correct.

Another issue that arises is that the single garbled gate functionality expects to receive a single

masking value for each wire. However, since this value is secret, it must be generated from shares

that are input by the parties. In Appendix A we describe the general construction for securely

computing Foffline in the FMPC-hybrid model (i.e., using any protocol that securely computes the

FMPC ideal functionality). In short, the parties input shares of λw to the functionality, the single

masking value is computed from these shares, and then input to all the necessary gates.

In the semi-honest case, the parties could contribute a share which is random in {0, 1}

(interpreted as an element in Fp) and then compute the product of all the shares (using the

underlying MPC) to obtain a random masking value in {0, 1}. This is however not the case in the

malicious case since parties might provide a share that is not from {0, 1} and thus the resulting

2In addition to the values kiw,0, k
i
w,1 and the output of F applied to these keys.

30

masking value wouldn’t likewise be from {0, 1}

This issue is solved in the following way. The computation is performed by having the parties

input random masking values λiw ∈ {1,−1}, instead of bits. This enables the computation of a

value µw to be the product of λ1
w, . . . , λ

n
w and to be random in {−1, 1} as long as one of them is

random. The product is then mapped to {0, 1} in Fp by computing λw = µw+1
2 .

In order to prevent corrupted parties from setting the final masking value λw values to be different

from ±1, the protocol for computing the circuit outputs (
∏n
i=1 λ

i
w)2 − 1, for every wire w (where

λiw is the share contributed from party i for wire w), and the parties can simply check whether it

is equal to zero or not. Thus, if any party cheats by causing some λw /∈ ±1, then this will be

discovered since the circuit outputs a non-zero value for (
∏n
i=1 λ

i
w)2 − 1, and so the parties detect

this and can abort. Since this occurs before any inputs are used, nothing is revealed by this.

Furthermore, if
∏n
i=1 λ

i
w ∈ ±1, then the additional value output reveals nothing about λw itself.

In the next section we shall remove all of the complications by basing our implementation for

FMPC upon the specific SPDZ protocol. The reason why the SPDZ implementation is simpler –

and more efficient – is that SPDZ provides generation of such shared values effectively for free.

31

32

Chapter 3

The SPDZ Based Instantiation

Functionality 4 (The SPDZ Functionality: FSPDZ).
The functionality consists of seven externally exposed commands Initialize, InputData, RandomBit,
Random, Add, Multiply, and Output and one internal subroutine Wait.

Initialize: On input (init , p,M,B,R, I) from all parties, the functionality activates and stores p. Pre-
processing is performed to generate data needed to respond to a maximum of M Multiply, B
RandomBit, R Random commands, and I InputData commands per party.

Wait: Waits on the adversary to return a GO/NO-GO decision. If the adversary returns NO-GO then
the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with
varid a fresh identifier, the functionality stores (varid , x). The functionality then calls Wait.

RandomBit: On command (randombit , varid) from all parties, with varid a fresh identifier, the func-
tionality selects a random value r ∈ {0, 1} and stores (varid , r). The functionality then calls
Wait.

Random: On command (random, varid) from all parties, with varid a fresh identifier, the functionality
selects a random value r ∈ Fp and stores (varid , r). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory),
the functionality retrieves (varid1, x), (varid2, y), stores (varid3, x+ y) and then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in
memory), the functionality retrieves (varid1, x), (varid2, y), stores (varid3, x · y) and then calls
Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present in memory), the function-
ality retrieves (varid , x) and outputs either (varid , x) in the case of i 6= 0 or (varid) if i = 0 to the
adversary. The functionality then calls Wait, and only if Wait does not abort then it outputs x
to all parties if i = 0, or it outputs x only to party i if i 6= 0.

33

3.1 Utilizing the SPDZ Protocol

As discussed in chapter 2, in the offline-phase we use an underlying secure computation protocol,

which, given a binary circuit and the matching inputs to its input wires, securely and

distributively garbles that binary circuit. In this section we simplify and optimize the

implementation of the protocol Πoffline which implements the functionality Foffline by utilizing the

specific SPDZ MPC protocol as the underlying implementation of FMPC. These optimizations are

possible because the SPDZ MPC protocol provides a richer interface to the protocol designer than

the naive generic MPC interface given in functionality FMPC. In particular, it provides the

capability of directly generating shared random bits and strings. These are used for generating

the masking values and pseudorandom function keys. Note that one of the most expensive steps

in FairplayMP [BNP08] was coin tossing to generate the masking values; by utilizing the specific

properties of SPDZ this is achieved essentially for free.

In Section 3.2 we describe explicit operations that are to be carried out on the inputs in order to

achieve the desired output; the complexity analysis of the circuit appears in Section 3.3 and the

expected results from an implementation of the circuit using the SPDZ protocol are in Section 3.4.

Throughout, we utilize FSPDZ (Functionality 4), which represents an idealized representation of

the SPDZ protocol, akin to the functionality FMPC from chapter 2. Note that in the real protocol,

FSPDZ is implemented itself by an offline phase (essentially corresponding to our preprocessing-I)

and an online phase (corresponding to our preprocessing-II). We fold the SPDZ offline phase into

the Initialize command of FSPDZ. In the SPDZ offline phase we need to know the maximum

number of multiplications, random values and random bits required in the online phase. In that

phase the random shared bits and values are produced, as well as the “Beaver Triples” for use in

the multiplication gates performed in the SPDZ online phase. In particular the consuming of

shared random bits and values results in no cost during the SPDZ online phase, with all

consumption costs being performed in the SPDZ offline phase. The protocol, which utilizes

Somewhat Homomorphic Encryption to produce the shared random values/bits and the Beaver

multiplication triples, is given in [DKL+13].

As before, we use the notation [varid] to represent the result stored in the variable varid by the

34

functionality. In particular we use the arithmetic shorthands [z] = [x] + [y] and [z] = [x] · [y] to

represent the result of calling the Add and Multiply commands on the functionality FSPDZ.

3.2 The Πoffline SPDZ based Protocol

As remarked earlier that Foffline can be securely computed using any secure multi-party protocol.

This is advantageous since it means that future efficiency improvements to concretely secure

multi-party computation (with a dishonest majority) will automatically make our protocol faster.

However, currently the best option is SPDZ. Specifically, protocol utilizes the fact that SPDZ can

very efficiently generate coin tosses. This means that it is not necessary for the parties to input

the λiw values, to multiply them together to obtain λw and to output the check values (λw)2 − 1.

Thus, this yields a significant efficiency improvement. We now describe the protocol which

implements Foffline in the FSPDZ-hybrid model.

preprocessing-I:

1. Initialize the MPC Engine: Call Initialize on the functionality FSPDZ with input p, a

prime with p > 2k and with parameters

M = 13 ·G, B = W, R = 2 ·W · n, I = 2 ·G · n+W,

where G is the number of gates, n is the number of parties and W is the number of input

wires per party. In practice the term W in the calculation of I needs only be an upper

bound on the total number of input wires per party in the circuit which will eventually be

evaluated.

2. Generate wire masks: For every circuit wire w we need to generate a sharing of the

(secret) masking-values λw. Thus for all wires w the parties execute the command

RandomBit on the functionality FSPDZ, the output is denoted by [λw]. The functionality

FSPDZ guarantees that λw ∈ {0, 1}.

3. Generate keys: For every wire w, each party i ∈ [1, . . . , n] and for j ∈ {0, 1}, the parties

call Random on the functionality FSPDZ to obtain output [kiw,j]. The parties then call

35

Output to open [kiw,j] to party i for all j and w. The vector of shares [kiw,j]
n
i=1 we shall

denote by [kw,j].

preprocessing-II: (This protocol implements the computation of the gate table as it is detailed in

the BMR protocol. The correctness of this construction is explained at the end of Section 1.3.3.)

1. Output input wire values: For all wires w which are attached to party Pi we execute the

command Output on the functionality FSPDZ to open [λw] to party i.

2. Output masks for circuit-output-wires: In order to reveal the real values of the

circuit-output-wires it is required to reveal their masking values. That is, for every

circuit-output-wire w, the parties execute the command Output on the functionality FSPDZ

for the stored value [λw].

3. Calculate garbled gates: This step is operated for each gate g in the circuit in parallel.

Specifically, let g be a gate whose input wires are a, b and output wire is c. Do as follows:

(a) Calculate output indicators: This step calculates four indicators [xa], [xb], [xc], [xd]

whose values will be in {0, 1}. Each one of the garbled labels Ag,Bg,Cg,Dg is a vector

of n elements that hide either the vector kc,0 = k1
c,0, . . . , k

n
c,0 or kc,1 = k1

c,1, . . . , k
n
c,1;

which one it hides depends on these indicators, i.e if xa = 0 then Ag hides kc,0 and if

xa = 1 then Ag hides kc,1. Similarly, Bg depends on xb, Cg depends on xc and Dc

depends on xd. Each indicator is determined by some function on [λa], [λb],[λc] and the

truth table of the gate fg. Every indicator is calculated slightly differently, as follows

(concrete examples are given after the preprocessing specification):

[xa] =

(
fg([λa], [λb])

?
6= [λc]

)
= (fg([λa], [λb])− [λc])

2

[xb] =

(
fg([λa], [λb])

?
6= [λc]

)
= (fg([λa], (1− [λb]))− [λc])

2

[xc] =

(
fg([λa], [λb])

?
6= [λc]

)
= (fg((1− [λa]), [λb])− [λc])

2

[xd] =

(
fg([λa], [λb])

?
6= [λc]

)
= (fg((1− [λa]), (1− [λb]))− [λc])

2

36

where the binary operator
?
6= is defined as [a]

?
6= [b] equals [0] if a = b, and equals [1] if

a 6= b. For the XOR function on a and b, for example, the operator can be evaluated by

computing [a] + [b]− 2 · [a] · [b]. Thus, these can be computed using Add and Multiply.

(b) Assign the correct vector: As described above, we use the calculated indicators to

choose for every garbled label either kc,0 or kc,1. Calculate:

[vc,xa] = (1− [xa]) · [kc,0] + [xa] · [kc,1]

[vc,xb] = (1− [xb]) · [kc,0] + [xa] · [kc,1]

[vc,xc] = (1− [xc]) · [kc,0] + [xa] · [kc,1]

[vc,xd] = (1− [xd]) · [kc,0] + [xa] · [kc,1]

In each equation either the value kc,0 or the value kc,1 is taken, depending on the

corresponding indicator value. Once again, these can be computed using Add and

Multiply.

(c) Calculate garbled labels: Party i knows the value of kiw,b (for wire w that enters

gate g) for b ∈ {0, 1}, and so can compute the 2 · n values

Fkiw,b
(0‖1‖g), . . . , Fkiw,b

(0‖n‖g) and Fkiw,b
(1‖1‖g), . . . , Fkiw,b

(1‖n‖g). Party i inputs

them by calling InputData on the functionality FSPDZ. The resulting input

pseudorandom vectors are denoted by

[F 0
kiw,b

(g)] = [Fkiw,b
(0‖1‖g), . . . , Fkiw,b

(0‖n‖g)]

[F 1
kiw,b

(g)] = [Fkiw,b
(1‖1‖g), . . . , Fkiw,b

(1‖n‖g)].

37

The parties now compute [Ag], [Bg], [Cg], [Dg], using Add, via

[Ag] =
∑n

i=1

(
[F 0
kia,0

(g)] + [F 0
kib,0

(g)]
)

+ [vc,xa]

[Bg] =
∑n

i=1

(
[F 1
kia,0

(g)] + [F 0
kib,1

(g)]
)

+ [vc,xb]

[Cg] =
∑n

i=1

(
[F 0
kia,1

(g)] + [F 1
kib,0

(g)]
)

+ [vc,xc]

[Dg] =
∑n

i=1

(
[F 1
kia,1

(g)] + [F 1
kib,1

(g)]
)

+ [vc,xd]

where every + operation is performed on vectors of n elements.

4. Notify parties: Output construction-done.

The functions fg in step 3a above depend on the specific gate being evaluated. For example, on

clear values we have,

• If fg = ∧ (i.e. the AND function), λa = 1, λb = 1 and λc = 0 then

xa = ((1 ∧ 1)− 0)2 = (1− 0)2 = 1. Similarly xb = ((1 ∧ (1− 1))− 0)2 = (0− 0)2 = 0, xc = 0

and xd = 0. The parties can compute fg on shared values [x] and [y] by computing

fg([x], [y]) = [x] · [y].

• If fg = ⊕ (i.e. the XOR function), then xa = ((1⊕ 1)− 0)2 = (0− 0)2 = 0,

xb = ((1⊕ (1− 1))− 0)2 = (1− 0)2 = 1, xc = 1 and xd = 0. The parties can compute fg on

shared values [x] and [y] by computing fg([x], [y]) = [x] + [y]− 2 · [x] · [y].

Below, we will show how [xa], [xb], [xc] and [xd] can be computed more efficiently.

3.3 Circuit Complexity

In this section we analyze the complexity of the above circuit in terms of the number of

multiplication gates and of its depth. We are highly concerned with multiplication gates since,

given the SPDZ shares [a] and [b] of the secrets a, and b resp., an interaction between the parties

is required to achieve a secret sharing of the secret a · b. Achieving a secret sharing of a linear

combination of a and b (i.e. α · a+ β · b where α and β are constants), however, can be done

38

locally and is thus considered negligible. We are interested in the depth of the circuit because it

gives a lower bound on the number of rounds of interaction that our circuit requires (note that

here, as before, we are concerned with the depth in terms of multiplication gates).

Multiplication gates: We first analyze the number of multiplication operations that are carried

out per gate (i.e. in Step 3) and later analyze the entire circuit.

• Multiplications per gate. We will follow the calculation that is done per gate

chronologically as it occurs in Step 3 of preprocessing-II phase:

1. In order to calculate the indicators in Step 3a it suffices to compute one multiplication

and 4 squares. We can do this by altering the equations a little. For example, for

fg = AND, we calculate the indicators by first computing [t] = [λa] · [λb] (this is the

only multiplication) and then [xa] = ([t]− [λc])
2, [xb] = ([λa]− [t]− [λc])

2,

[xc] = ([λb]− [t]− [λc])
2, and [xd] = (1− [λa]− [λb] + [t]− [λc])

2.

[xa] = ([t]− [λc])
2

[xb] = ([λa]− [t]− [λc])
2

[xc] = ([λb]− [t]− [λc])
2

[xd] = (1− [λa]− [λb] + [t]− [λc])
2

As another example, for fg = XOR, we first compute

[t] = [λa]⊕ [λb] = [λa] + [λb]− 2 · [λa] · [λb] (this is the only multiplication), and then

[xa] = ([t]− [λc])
2, [xb] = (1− [λa]− [λb] + 2 · [t]− [λc])

2, [xc] = [xb], and [xd] = [xa].

39

[xa] = ([t]− [λc])
2

[xb] = (1− [λa]− [λb] + 2 · [t]− [λc])
2

[xc] = [xb]

[xd] = [xa]

Observe that in XOR gates only two squaring operations are needed.

2. To obtain the correct vector (in Step 3b) which is used in each garbled label, we carry

out 8 multiplications. Note that in XOR gates only 4 multiplications are needed,

because kc,xc = kc,xb and kc,xd = kc,xa .

Summing up, we have 4 squaring operations in addition to 9 multiplication operations per

AND gate and 2 squarings in addition to 5 multiplications per XOR gate.

• Multiplications in the entire circuit. Denote the number of multiplication operation

per gate (i.e. 13 for AND and 7 for XOR) by c, we get G · c multiplications for garbling all

gates (where G is the number of gates in the boolean circuit computing the functionality f).

Besides garbling the gates we have no other multiplication operations in the circuit. Thus

we require c ·G multiplications in total.

Depth of the circuit and round complexity: Each gate can be garbled by a circuit of depth

3 (two levels are required for Step 3a and another one for Step 3b). Recall that additions are local

operations only and thus we measure depth in terms of multiplication gates only. Since all gates

can be garbled in parallel this implies an overall depth of three. (Of course in practice it may be

more efficient to garble a set of gates at a time so as to maximize the use of bandwidth and CPU

resources.) Since the number of rounds of the SPDZ protocol is in the order of the depth of the

circuit, it follows that Foffline can be securely computed in a constant number of rounds.

Other Considerations: The overall cost of the pre-processing does not just depend on the

number of multiplications. Rather, the parties also need to produce the random data via calls to

40

No. Parties Beaver Triple RandomBit Random Input

2 0.4 0.4 0.3 0.3
3 0.6 0.5 0.4 0.4
4 0.9 1.2 0.9 0.9

Table 3.1: SPDZ offline generation times in milliseconds per operation

Random and RandomBit to the functionality FSPDZ.1 It is clear all of these can be executed in

parallel. If W is the number of wires in the circuit then the total number of calls to RandomBit

is equal to W , whereas the total number of calls to Random is 2 · n ·W .

Arithmetic vs Boolean Circuits: Our protocol will perform favourably for functions which

are reasonably represented as boolean circuit, but the low round complexity may be outweighed

by other factors when the function can be expressed much more succinctly using an arithmetic

circuit, or other programatic representation as in [KSS13]. In such cases, the performance would

need to be tested for the specific function.

3.4 Expected Runtimes

To estimate the running time of our protocol, we extrapolate from known public data

[DPSZ12, DKL+13]. The offline phase of our protocol runs both the offline and online phases of

the SPDZ protocol. The numbers below refer to the SPDZ offline phase, as described in

[DKL+13], with covert security and a 20% probability of cheating, using finite fields of size

128-bits, to obtain the following generation times (in milli-seconds). As described in [DKL+13],

comparable times are obtainable for running in the fully malicious mode (but more memory is

needed).

The implementation of the SPDZ online phase, described in both [DKL+13] and [KSS13], reports

online throughputs of between 200,000 and 600,000 per second for multiplication, depending on

the system configuration. As remarked earlier the online time of other operations is negligible and

are therefore ignored.

To see what this would imply in practice consider the AES circuit described in [PSSW09]; which

1These Random calls are followed immediately with an Open to a party. However, in SPDZ Random followed
by Open has roughly the same cost as Random alone.

41

has become the standard benchmarking case for secure computation calculations. The basic AES

circuit has around 33,000 gates and a similar number of wires, including the key expansion within

the circuit.2 Assuming the parties share a XOR sharing of the AES key, (which adds an

additional 2 · n · 128 gates and wires to the circuit), the parameters for the Initialize call to the

FSPDZ functionality in the preprocessing-I protocol will be

M ≈ 429, 000, B ≈ 33, 000, R ≈ 66, 000 · n, I ≈ 66, 000 · n+ 128.

Using the above execution times for the SPDZ protocol we can then estimate the time needed for

the two parts of our processing step for the AES circuit. The expected execution times, in

seconds, are given in the following table. These expected times, due to the methodology of our

protocol, are likely to estimate both the latency and throughput amortized over many executions.

No. Parties preprocessing-I preprocessing-II

2 264 0.7–2.0

3 432 0.7–2.0

4 901 0.7–2.0

The execution of the online phase of our protocol, when the parties are given their inputs and

actually want to compute the function, is very efficient: all that is needed is the evaluation of a

garbled circuit based on the data obtained in the offline stage. Specifically, for each gate each

party needs to process two input wires, and for each wire it needs to expand n seeds to a length

which is n times their original length (where n denotes the number of parties). Namely, for each

gate each party needs to compute a pseudorandom function 2n2 times (more specifically, it needs

to run 2n key schedulings, and use each key for n encryptions). We examined the cost of

implementing these operations for an AES circuit of 33,000 gates when the pseudorandom

function is computed using the AES-NI instruction set. The run times for n = 2, 3, 4 parties were

6.35msec, 9.88msec and 15msec, respectively, for C code compiled using the gcc compiler on a

2.9GHZ Xeon machine. The actual run time, including all non-cryptographic operations, should

be higher, but of the same order.

2Note that unlike [PSSW09] and other Yao based techniques we cannot process XOR gates for free. On the other
hand we are not restricted to only two parties.

42

Our run-times estimates compare favourably to several other results on implementing secure

computation of AES in a multiparty setting:

• In [DKL+12] an actively secure computation of AES using SPDZ took an offline time of

over five minutes per AES block, with an online time of around a quarter of a second; that

computation used a security parameter of 64 as opposed to our estimates using a security

parameter of 128.

• In [KSS13] another experiment was shown which can achieve a latency of 50 milliseconds in

the online phase for AES (but no offline times are given).

• In [NNOB12] the authors report on a two-party MPC evaluation of the AES circuit using

the Tiny-OT protocol; they obtain for 80 bits of security an amortized offline time of nearly

three seconds per AES block, and an amortized online time of 30 milliseconds; but the

reported non-amortized latency is much worse. Furthermore, this implementation is limited

to the case of two parties, whereas we obtain security for multiple parties.

Most importantly, all of the above experiments were carried out in a LAN setting where

communication latency is very small. However, in other settings where parties are not connect by

very fast connections, the effect of the number of rounds on the protocol will be extremely

significant. For example, in [DKL+12], an arithmetic circuit for AES is constructed of depth 120,

and this is then reduced to depth 50 using a bit decomposition technique. Note that if parties are

in separate geographical locations, then this number of rounds will very quickly dominate the

running time. For example, the latency on Amazon EC2 between Virginia and Ireland is 75ms.

For a circuit depth of 50, and even assuming just a single round per level, the running-time

cannot be less than 3750 milliseconds (even if computation takes zero time). In contrast, our

online phase has just 2 rounds of communication and so will take in the range of 150 milliseconds.

We stress that even on a much faster network with latency of just 10ms, protocols with 50 rounds

of communication will still be slow.

43

44

Chapter 4

Security Proof

The security proof is contains two steps. In the first step we reduce security in the semi-honest

case, i.e. for an adversary A that does not deviate from the described protocol and only tries to

learn information from the transcript, to the security of the original BMR protocol. In the second

step we show that our protocol remains secure even if A is malicious, i.e. is allowed to deviate

from the protocol. This second step is performed by giving a reduction from the malicious model

to the semi-honest model. In both steps the adversary A is assumed to corrupt parties in the

beginning of the execution of our protocol.

To be able to follow the proof smoothly we first present some conventions and notations. In both

the original BMR protocol and our protocol the players obtain a garbled circuit and a matched

set of garbled inputs, they are then able to evaluate the circuit without further interaction. The

players evaluate the circuit from the bottom up until they reach the circuit-output wires. I.e. the

input wires are said to be at the “bottom” of the circuit, whilst the output wires are at the “top”.

In their evaluation the players use the garbled gate g to reveal a single external value for wire c

(i.e. Λc, where c is g’s output wire) together with an appropriate key-vector

kc,Λc = k1
c,Λc

, . . . , knc,Λc . There is only one entry in the garbled gate that can be used to reveal the

pair (Λc,kc,Λc); specifically if g’s input wires are a and b then entry (2Λa + Λb) in the table of the

garbled gate of g is used (where the entries indices are 0 for Ag, 1 for Bg, 2 for Cg and 3 for Dg).

For each gate we denote the garbled gate’s entry for which the players evaluate that gate as the

45

active entry and the other three entries as inactive entries. Similarly we use the term active signal

to denote the value Λc that is revealed for some wire c, and the term active path for the set of

active signals that have been revealed to the players during the evaluation of the circuit. Recall

that in the online phase of our protocol the players exchange the active signal of all the

circuit-input wires. We denote by I the set of indices of the players that are under the control of

the adversary A, and by xI denoted their inputs to the functionality (note that in the malicious

case these inputs might be different from the inputs that the players have been given originally).

In the same manner, J is the set of indices of the honest-parties and xJ denoted their inputs.

(Therefore |I ∪ J | = n and I ∩ J = ∅.) We denote by W , Win and Wout the sets of all wires, the

set of circuit-input wires (a.k.a. attached wires) and the set of circuit-output wires of the circuit

C. We denote the set of gates in the circuit as G = {g1, . . . , g|G|}. Recall that κ is the security

parameter.

4.1 Security in the semi-honest model

View 1 (The view REALBMR
A).

For every i ∈ I the adversary sees the following:

1. Masking shares: Shares of the masking values for all wires W , i.e. {λiw ∈ {0, 1} | w ∈W}.

2. Masking values for attached wires: The ` masking values λw of Pi’s attached wires
w are revealed in the clear.

3. Seeds: Player Pi’s seed values {siw,0, siw,1 ∈ {0, 1}κ | w ∈W}.

4. Seed extensions: For each seed siw,b player Pi sees two pseudo-random extensions

G1(siw,b), G
2(siw,b) ∈ {0, 1}nκ.

In addition the adversary sees:

1. Masking values for output wires: The masking values {λw ∈ {0, 1} | w ∈Wout}.

2. Garbled circuit: For every gate g the garbled table {Ag, Bg, Cg, Dg | g ∈ G} where
Ag, Bg, Cg, Dg ∈ {0, 1}nκ.

3. Inputs: The input values x̄I .

4. Active path: For every wire w in the circuit one active signal together with its matched
superseed, i.e. (Λw, Sw,Λw

), using one entry of the garbled gate. The rest of the values (i.e.
the inactive entries) are indistinguishable from random.

46

The idea is to show that there exist a probabilistic polynomial-time procedure, P, whose input is

a view sampled from the view distribution of a semi-honest adversary involved in a real execution

of the original BMR protocol1, namely REALBMR
A in View 1; and its output is a view from the view

distribution of a semi honest adversary involved in a real execution of our protocol, namely

REALOur
A (x̄) in View 2. Formally, the procedure is defined as

P : {REAL
BMR
A }x̄ → {REAL

Our
A (x̄)}x̄

where x̄ = x1, . . . , xn is the players’ input to the functionality.

In this section we present the procedure P and show that {P(REALBMR
A)}x̄ and {REALOur

A (x̄)}x̄ are

indistinguishable. We then show that the existence of a simulator, SBMR, for A’s view in the

execution of the original BMR protocol implies the existence of a simulator SOUR for A’s view in

the execution of our protocol. In the following we first describe REALBMR
A (View 1) and

REALOur
A (x̄) (View 2), then we describe the procedure P and prove the mentioned claims.

We are ready to describe the procedure P (Procedure 1), which is given a view REALBMR
A that is

sampled from the distribution of the adversary’s views under the input x̄ of the players in the

original BMR protocol, and outputs a view from the distribution of the adversary’s views in our

protocol (i.e. REALOur
A (x̄)). We will then show that the resulting distribution of views is

indistinguishable from REALOur
A (x̄) for every x̄. Since P sees the garbled circuit and the matched

set of (garbled) inputs from all players, it can evaluate the circuit by itself and determine the

active path and the output ȳI , however, P does not knows x̄J (it only knows x̄I) and thus cannot

construct a garbled circuit for our protocol from scratch, it must instead use the information that

can be extracted from it’s input view.

Claim 1. Given that the BMR protocol is secure in the semi-honest model, our protocol is secure

in the semi-honest model as well.

1In this section we actually refer to the execution in the hybrid model where the parties have access to the underlying MPC
functionality. We denote it as real execution for convenience.

47

View 2 (The view REALOur
A (x̄)).

For every i ∈ I the adversary sees the following:

1. Masking values for attached wires: The ` masking values λw of Pi’s attached wires
w are revealed in the clear.

2. Keys. Player Pi’s random keys {kiw,0, kiw,1 ∈ Fp | w ∈W}.

3. Keys extensions. For every key kiw,b, and for every gate g which wire w enters into, the
values {

Fkiw,b
(0‖1‖g), . . . , Fkiw,b

(0‖n‖g),

Fkiw,b
(1‖1‖g), . . . , Fkiw,b

(1‖n‖g) | w ∈W
}
.

In addition the adversary sees:

1. Masking values for output wires: The masking values {λw ∈ {0, 1} | w ∈Wout}.

2. Construction done. The message construction-done broadcasted by the functionality.

3. Inputs. The input values x̄I .

4. Open message The message open.

5. Garbled circuit. For every gate g {Ag, Bg, Cg, Dg | g ∈ G} where Ag, Bg, Cg, Dg ∈ (Fp)n.

6. Active path. For every wire w in the circuit one active signal together with its matched
key-vector, i.e. (Λw,kw,Λw

), using one entry of the garbled gate.

48

Procedure 1 (The Procedure P).

Input. A view v taken from distribution REALBMR
A under the input x̄.

Output. A view v′ conforming to the message flow in REALOur
A (x̄).

The procedure proceeds as follows:

1. Take the masking values for the attached wires and for the output wires Wout to be the
same as in v.

2. Set xI to be the same as in v.

3. To construct the garbled circuit:

(a) Choose a random set of keys {kiw,b | w ∈ W, b ∈ {0, 1}, i ∈ I ∪ J} for the players, and
for each key compute the appropriate 2n PRF values.

(b) Choose a random set of masking values for all wires that are not attached with the
players PI and are not in Wout.

(c) For every gate g in the circuit, with input wires a, b and output wire c, the algorithm
sets the the garbled entries (except one as described immediately) to be random values
from (Fp)n whilst for the (2 ·Λa + Λb)-th entry the algorithm instead conceals the Λc
key-vector (in contrast to the real construction in which the key-vector that the entry
conceals depends on the masking values of a, b and c). That is, when the algorithm
construct the garbled gates it ignores the masking values that it chose in the previous
step. For example, take Λa = 1,Λb = 0 and Λc = 1 then the entry by which the
players evaluate the gate is the 2 ·Λa+Λb = 2 (i.e. the third) entry which is Cg. Thus
P makes Cg to encrypt the 1-key vector, i.e. kc,1 by:

Ajg
R← Fp

Bjg
R← Fp

Cjg =

(
n∑
i=1

Fkia,1
(0‖j‖g) + Fkib,0(1‖j‖g)

)
+ kjc,1

Dj
g

R← Fp

for j = 1, . . . , n as described in Functionality 3. Note that we explicitly conceal kjc,1
for every element in kc,1 because we already know from the active path of v that the
external value of wire c is Λc = 1.

4. Add the messages construction-done and open to the obvious location in the resulting view.

49

Proof. From the security of the BMR protocol we know that

{SBMR(1κ, I, xI , yI)}x̄
c≡ {REAL

BMR
A }x̄

thus, for every PPT algorithm, and specifically for algorithm P it holds that

{P(SBMR(1κ, I, xI , yI))}x̄
c≡ {P(REAL

BMR
A)}x̄

then, if the following computational indistinguishability holds (proven in claim 2)

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄ (4.1)

then by transitivity of indistinguishability, it follows that

{P(SBMR(1κ, I, xI , yI))}x̄
c≡ {P(REALBMR

A)}x̄
c≡ {REAL

Our
A (x̄)}x̄

⇒ {P(SBMR(1κ, I, xI , yI))}x̄
c≡ {REAL

Our
A (x̄)}x̄

hence, P ◦SBMR is a good simulator for the view of the adversary in the semi honest model. �

In the following we prove Equation 4.1:

Claim 2. The probability ensemble of the view of the adversary in the real execution of our

protocol and the probability ensemble of the view of the adversary resulting by the procedure P,

both indexed by the players’ inputs to the functionality x̄, are computationally indistinguishable.

That is:

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄

Proof. Remember that in the procedure P we do not have any information about the masking

values {λw | w ∈W} (except of those which are known to the adversary), therefore we couldn’t

compute the indicators xA, xB, xC , xD (as described in section 3.2) and thus couldn’t tell which

key vector is encrypted in each entry, that is, we couldn’t fill out correctly the four garbled gate’s

entries A,B,C,D. On the other hand, in the procedure P we do know the set of external values

50

{exvw | w ∈W}, thus, we know for sure that for every gate g, with input wires a, b and output

wire c, the key vector encrypted in the 2Λa + Λb-th entry of the garbled table of gate g is the Λc

-th key vector kc,Λc .

Let us denote by {REALOur
A (x̄)}f,x̄,kiw,β ,λj the view of the adversary in the execution of our protocol

(which computes the functionality f) with players’ inputs x̄ when using the keys

{kiw,β | 1 ≤ i ≤ n,w ∈W,β ∈ {0, 1}} and the masking values {λj | j ∈W}. Similarly, denote by

{P(REALBMR
A)}f,x̄,kiw,β ,λj the view of the adversary in the output of the procedure P.

Given that

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj (4.2)

are computationally indistinguishable (i.e. under the same functionality, players’ inputs, keys and

masking values) it follows that

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄

since the functionality, keys and masking values are taken from exactly the same distributions in

both cases. In the following (claim 3) we prove that Equation 4.2 holds.

Claim 3. Fix a functionality f , players’ inputs x̄, keys {kiw,β | 1 ≤ i ≤ n,w ∈W,β ∈ {0, 1}} and

masking values {λj | j ∈W} used in both the execution of our protocol and the procedure P, then

equation (4.2) holds; that is

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj

Proof. Remember that the difference between {REALOur
A (x̄)}f,x̄,kiw,β ,λj and {P(REALBMR

A)}f,x̄,kiw,β ,λj
are the values of the entries of the garbled gates which are not in the active path, that is, in

{REALOur
A (x̄)}f,x̄,kiw,β ,λj these values are computed as described in section 3.2 while in

{P(REALBMR
A)}f,x̄,kiw,β ,λj they are just random values from (Fp)n.

51

Let D be a polynomial time distinguisher such that

|Pr[D({REAL
Our
A (x̄)}f,x̄,kiw,β ,λj) = 1]− Pr[D({P(REAL

BMR
A)}f,x̄,kiw,β ,λj) = 1]| = ε(κ)

and assume by contradiction that ε is some non-negligible function in κ.

Let C be the boolean circuit that computes the functionality f . For the purpose of the proof we

index the gates of C (the set of gates is denoted by G) in the following manner: C may be

considered as a Directed Acyclic Graph (DAG), where the gates are the nodes in the graph and a

output wire of gate g1 which enters as input wire to gate g2 indicates the edge (g1, g2) in the

graph; We compute a topological ordering of the graph, that is, if the output wire of gate g1

enters to gate g2 then the index that g1 gets in the ordering is lower than the index of gate g2.

(Note that there might exist many valid topological ordering for the same graph). For the sake of

the proof, whenever we write gi we refer to the ith gate in the topological ordering.

We define the hybrid Ht as the view in which the gates g1, g2, . . . , gt are computed as in the

procedure P (i.e. the inactive entries are just random elements from (Fp)n) and the gates

gt+1, . . . , g|G| are computed as described in our protocol (Section 3.2). Observe that H0 is

distributed exactly as the view of the adversary in {REALOur
A (x̄)}f,x̄,kiw,β ,λj and H |G| is distributed

exactly as the view of the adversary in {P(REALBMR
A)}f,x̄,kiw,β ,λj . Thus, by hybrid argument it

follows that there exists an integer 0 ≤ z < |G| − 1 such that the distinguisher D can distinguish

between the two distributions Hz and Hz+1 with non-negligible probability ε′.

Let us take a closer look at the hybrids Hz and Hz+1: Let g be a gate from layer z + 1 with input

wires a, b and output wire c,

• If the view is taken from Hz+1 then the garbled table (Ag, Bg, Cg, Dg) is computed as

described in the procedure P, that is, the external values Λa,Λb,Λc are known and thus the

key kc,Λc is encrypted using keys ka,Λa and kb,Λb in the 2Λa + Λb-th entry (the active entry)

while the other three (inactive) entries are independent of ka,Λa , kb,Λb , ka,Λ̄a and kb,Λ̄b

52

(because P chooses them at random from (Fp)n).

• If the view is taken from Hz then the garbled table of g is computed correctly for all the

four entries. Let g̃a be a gate whose output wire is a (which, as written above, is an input

wire to gate g); note that by the topological ordering of the gates the index of g̃a has lower

index than the index of g and thus there is exactly one entry (the active entry) in the

garbled table of g̃a which encrypts ka,Λa while the other three (inactive) entries are random

values from (Fp)
n, therefore reveal no information about ka,Λa , and more important, no

information about ka,Λ̄a . The same observation holds for the gate g̃b whose output wire is b.

We get that in the computation of the garbled table of gate g (recall that it is in layer z + 1

and we are currently looking at hybrid Hz) there is exactly one entry (i.e. the active entry)

which depends on both ka,Λa and kb,Λb while the other three (inactive) entries are depend

on at least one of ka,Λ̄a and kb,Λ̄b , which the distinguisher D has no information about.

Thus, whenever a computation of F using a key from the vectors ka,Λ̄a or kb,Λ̄b is required

in order to compute the inactive entries of gate g (in the view Hz), we could use some other

key k̃ instead; in particular, we could use F without even know k̃ at all, e.g. when working

with an oracle.

In the following we exploit the above observation: since the distinguisher D has no information

about ka,Λ̄a or kb,Λ̄b , we could construct the garbled table using some other keys, and because we

are interested in the result of F under those keys (and not in the keys themselves) we could even

use an oracle to a PRF. Thus, if D distinguishes between Hz and Hz+1 then we can use it to

distinguish between an oracle to a pseudorandom function and an oracle to a truly random

function (under multiple invocations of the oracle, because there are 2n keys in the two vectors

ka,Λ̄a and kb,Λ̄b).

Let us first define pseudo random function under multiple keys:

Definition 1. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient, length preserving, keyed

function. F is a pseudo random function under multiple keys if for all polynomial time

53

distinguishers D, there is a negligible function neg such that:

|Pr[DFk̄(·)(1n) = 1]− Pr[Df̄(·)(1n) = 1]| ≤ neg(n)

where Fk̄ = Fk1 , . . . , Fkm(n)
are the pseudo random function F keyed with polynomial number of

randomly chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are m(n) random functions from

{0, 1}n → {0, 1}n. The probability in both cases is taken over the randomness of D as well.

It is easy to see (by a hybrid argument) that if F is a pseudo random function then it is a pseudo

random function under multiple keys, thus, since the function F used in our protocol is a PRF

then for every polynomial time distinguisher D̃, every positive polynomial p and for all sufficiently

large κ:

|Pr[D̃Fk̄(·)(1κ) = 1]− Pr[D̃f̄(·)(1κ) = 1]| ≤ 1

p(κ)
(4.3)

We now present a reduction from the indistinguishability between Hz and Hz+1 to the

indistinguishability of the pseudorandom function F under multiple keys. Given the polynomial

time distinguisher D who distinguishes between Hz and Hz+1 with non negligible probability ε′,

we construct a polynomial time distinguisher D′ who distinguishes between F under multiple keys

and a set of truly random functions (and thus contradicting the pseudorandomness of F). The

distinguisher D′ has an access to O = O1, . . . ,O2n (which is either a PRF under multiple keys or

a set of truly random functions), D′ act as follows:

1. Chooses keys and masking values for all players and wires, i.e.

{kiw,b | w ∈W, b ∈ {0, 1}, i ∈ {1, . . . , n}} and {λw | w ∈W}.

2. Constructs the gates g1, . . . , gz as described in the procedure P, i.e. only the [active entry]

is calculated correctly, the rest three entries are taken to be random from (Fp)n.

3. Construct the garbled table of gate gz+1 in the following manner: denote its input wires by

a, b and the output wire by c; we want that the key-vector kc,Λc be encrypted using the

key-vectors ka,Λa and kb,Λb and held in the 2Λa + Λb entry, thus:

54

• Whenever a result of F applied to the key kia,Λa is required, it computes it correctly as

in our protocol. (The same holds for the key kib,Λb).

• Whenever a result of F applied to the key ki
a,Λa

is required, the distinguisher D′

queries the oracle Oi instead. (The same holds for the key ki
b,Λb

; here, however, the

distinguisher D′ queries the oracle On+i).

4. Completes the computation of the garbled circuit, i.e. the garbled tables of gates

gz+2, . . . , g|G|, correctly, as in our protocol.

5. Hands the resulting view to D and outputs whatever it outputs.

Observe that if O = Fk̄ then the view that D′ hands to D is distributed identically to Hz while if

O = f̄ then the view that D′ hands to D is distributed identically to Hz+1. Thus:

|Pr[D′Fk̄(·)(1κ) = 1]− Pr[D′f̄(·)(1κ) = 1]| =

|Pr[D(Hz) = 1]− Pr[D(Hz+1) = 1]| = ε′

where ε′ is a non-negligible probability (as mentioned above), in contradiction to the

pseudo-randomness of F . We conclude that the assumption of the existence of D is incorrect and

thus:

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj

4.2 Security in the malicious model

When our protocol relies on SPDZ as its underlying MPC then the keys that each party sees are

guaranteed to be uniformly chosen from Fp and the masking values of all wires are guaranteed to

be random values from {0, 1}. Thus, the garbled circuit is guaranteed to be built correctly and

privately by the parties as a function of the original circuit C (which computes the functionality

f), the set of keys of all parties, the set of masking values of all wires and by the PRF results that

55

the parties apply to these keys. However, the elements of the last item (the PRF results) are not

guaranteed to be computed correctly (moreover, below we show that it is a waste to verify the

correctness of their computation) and we must show that cheating in a PRF result(s) would cause

the honest parties to abort.

Specifically, there are two locations in which a maliciously corrupted party might deviate from the

protocol:

• A corrupted party might cheat in the offline phase by inputting a false value as one (or

more) of the PRF results of its keys (i.e. PRF result that is not computed as described in

the protocol).

• A corrupted party Pc, to whom the circuit input wire w is attached, might cheat in the

online phase by sending the external value Λ′w 6= λw ⊕ ρw, i.e. Pc sends Λw.

It is clear that the first kind of behavior has the same effect as if the adversary inputs to the

functionality the value ρ̄w instead of ρw, since Λ̄w = λw ⊕ ρ̄w, and thus, this behavior is permitted

to a malicious adversary (i.e. a malicious adversary is able to change the input to the functionality

without being considered as a cheat since this behaviour is unavoidable even in the ideal model).

We break the proof of the security in the malicious case into two steps: first we show that the

adversary cannot break the correctness of the protocol with more than negligible probability, and

then we use that result (of correctness) in order to show that the joint distributions of the output

of the parties in the ideal and real worlds are indistinguishable.

4.2.1 Correctness

Let us denote the event in which a corrupted party cheats by inputting a false PRF result in the

offline phase as cheat (the event refers to one corrupted party and we show below that even if only

one party cheats then the honest parties abort). In the following we prove the following claim:

Claim 4. A malicious adversary cannot break the correctness property of our protocol except with

a negligible probability. Formally, denote the set of outputs of the honest parties in our protocol as

56

ΠJ
SFE and their outputs when computed by the functionality f as yJ , then for every positive

polynomial p and for sufficiently large κ it holds that

Pr[ΠJ
SFE 6= yJ ∧ΠJ

SFE 6= ⊥ | cheat] ≤ 1

p(κ)

Proof. To harm the correctness property of the protocol, the adversary has to provide to the

offline phase incorrect results of F applied to its keys, such that the generated garbled circuit will

cause the honest parties to output some set of values that is different from yJ .

Let GCSH be the garbled circuit generated by the offline phase in the semi-honest model, i.e.

when the adversary provides the correct results of F , and let GCM be the garbled circuit resulted

in the malicious model (such that in both cases the random tape used by the underlying MPC,

the adversary and the parties is the same, that is, same keys and masking values are being used).

Observe that if the adversary succeeds in breaking the correctness then there must be at least one

wire c and at least one honest party Pj where the gate g has input wires a, b and output wire c,

such that in the evaluation of GCSH (in the online phase) the active signal that Pj sees is (v, kjc,v)

(where v = Λc is the external value) and in GCM the active signal is (v̄, kjc,v̄) (that is, the

adversary succeeded in flipping the signal that passes through wire c).

In the following analysis we let the adversary more power than it has in reality and assume that it

can predict, even before supplying its PRF results (i.e. in the offline phase), which entries are

going to be evaluated in the online phase (i.e. it knows the active path). For example, it knows

that for some gate g with input wires a, b and output wire c, Λa = Λb = 0 and thus the active

entry for gate g is Ag. In addition, observe that the success probability of the adversary (of

breaking the correctness property) is independent for every gate, thus it is sufficient to calculate

the success probability of the adversary for a single gate and then multiply the result by the

number of gates in the circuit.

We first analyze the success probability of the adversary in breaking the correctness of the gate g

with input wires a, b and output wire c. Assume, without loss of generality, that the active entry

of gate g is Ag which is a vector of n elements from Fp, such that the j-th element of Ag is

57

calculated (as described in Functionality 3) by

Ajg =

(
n∑
i=1

Fkia,0
(0‖j ‖g) + Fkib,0

(0‖j ‖g)

)
+ kjc,v (4.4)

Recall that J is the set of corrupted parties and J = [N] r I. For simplicity define

Xj , FkIa,0
(0‖j ‖g) + FkIb,0

(0‖j ‖g) =
∑
i∈I

(
Fkia,0

(0‖j ‖g) + Fkib,0
(0‖j ‖g)

)
Y j , FkJa,0

(0‖j ‖g) + FkJa,0
(0‖j ‖g) =

∑
i∈J

(
Fkia,0

(0‖j ‖g) + Fkib,0
(0‖j ‖g)

)

i.e. Xj is the sum of the PRF results that the adversary provides and Y j is the sum of the PRF

results that the honest player provides. Thus, rewriting equation (4.4) we obtain

Ajg = Xj + Y j + kjc,v

In order to break the correctness of gate g, the adversary has to flip the active signal for at least

one j ∈ J (i.e. for at least one honest party), that is, the adversary has to provide false PRF

results X̃j such that

Ãjg = X̃j + Y j + kjc,v̄

Let ∆j be the difference between the two hidden keys, i.e. ∆j = kjc,v − kjc,v̄ mod p, then it follows

that kjc,v̄ = kjc,v −∆j mod p and thus in order to make the honest party Pj evaluate the key kjc,v̄

instead of the key kjc,v the adversary has to set X̃ = X −∆j . Then it holds that

X̃ + Y + kjc,v = X −∆j + Y + kjc,v

= X + Y + kjc,v̄

= Ãjg

as required and the j-th element (which actually verified by Pj) will be flipped. Observe that in

order to succeed the adversary has to find ∆j . But, since kjc,v and kjc,v̄ are random elements from

58

Fp, the value ∆j is also a random element from Fp. Note that the adversary provides all the PRF

result before the garbled circuit and the garbled inputs are revealed and thus the values that it

provides are independent of the garbled circuit (in particular, they are independent of the keys

kjc,v and kjc,v̄). Note that the same analysis holds for the entries Bg, Cg, Dg as well.

Let flipped-g be the event in which the adversary succeeds in flipping the signal for at least one

honest party Pj in the active entry of gate g, it follows that:

Pr[flipped-g] = Pr[∆j = kjc,v − k
j
c,v̄] =

1

p
<

1

2κ

Now, assume that when the adversary guesses a wrong ∆j for some entry of some gate, the

parties do not abort and somehow can keep evaluating the circuit using the correct key; then the

probability of the adversary breaking the correctness of the protocol is just a sum of its success

probability for all gates. Let t be a polynomial such that t(κ) is an upper bound for the number

of gates in the circuit, then by union bound we get:

Pr[ΠJ
SFE 6= yJ | cheat] <

t(κ)

2κ
<

1

q(κ)

for every positive polynomial q.

4.2.2 Emulation in the ideal model.

In the following we describe the ideal model in which the adversary’s view will be emulated, then

we show the existence of a simulator S ′OUR in the malicious model which uses the simulator SOUR

in the semi-honest model. The ideal model is as follows:

Inputs. The parties send their inputs (x̄) to the trusted party.

Function computed. The trusted party computes f(x̄).

Adversary decides. The adversary gets the output yI and sends to the trusted party whether

to ‘continue’ or ‘halt’. If ‘continue’ then the trusted party sends to the honest parties PJ the

output yJ , otherwise the trusted party sends abort to players PJ .

59

Outputs. The honest parties output whatever the trusted party sent them while the corrupted

parties output nothing. The adversary A outputs any arbitrary (PPT) function of the

initial input of the corrupted parties and the value yJ obtained from the trusted party.

The reason that the adversary may decide whether the honest parties obtain the output or not is

due to the fact that guaranteed output delivery and fairness cannot be achieved with dishonest

majority in the general case (as shown in [Cle86]).

The ideal execution of f on inputs x̄ and corrupted parties PI (who are controlled by adversary A)

is denoted by IDEAL
f
A,I(x̄) and the real execution is denoted by REAL-MALOur

A,I (x̄); in both cases they

refer to the joint distribution of the outputs of all parties. (In the following proof we use

REALOur
A (x̄) to refer to the real execution in the semi-honest model).

Proof outline. In the following proof we make use of two procedures P ′ (which is close to the

procedure P) and H. The procedure P ′ is given a view of the adversary in the semi-honest model

(or a view that is indistinguishable to it, e.g. a simulated view) and a set of keys KI, and outputs

the exact same view, but rather, the keys that are opened to the adversary now are KI. The

procedure H is given a view of the adversary in the semi-honest model (or a view that is

indistinguishable to it) and a set of PRF results FI, and outputs the exact same view, but rather,

applies the set of PRF results FI to the view as if the adversary has provided them in the real

execution of the protocol (that is, the set FI affects the exact same locations in the input view

that it would have affect it in a real execution of the protocol in the malicious model).

The simulator S ′OUR will engage in the ideal computation such that it only gives the input xI to

the trusted party and then receives the output yI . The simulator S ′OUR also instructs the trusted

party whether to abort or not (i.e. whether to send the honest parties their output). The output

of the parties (all of them) in the ideal settings must be indistinguishable to their output in the

real execution of our protocol.

60

The idea of the simulation method is that we can use the fact that there exist a simulator SOUR

in the semi-honest model which can construct a garbled circuit that is indistinguishable from the

one constructed by our protocol in the semi-honest model. By internally running A, the simulator

S ′OUR can extract the inputs of the adversary x̄, the keys KI that were opened to it and the exact

locations in which A has cheated (that is, the set FI of PRF results that it provides given that

the set of keys that it sees are KI). Hence, using the procedures P ′ and H, the simulator S ′OUR

can tweak the garbled circuit which resulted by SOUR in the specific locations to match the

garbled circuit.

The procedure P ′

Let us define the procedure P ′ (Procedure 2) which receives as input a view simulated by SOUR or

a real view of the adversary in the semi-honest model (REALOur
A (x̄)), along with a set of keys

KI = {kiw,j | i ∈ I, w ∈W, j ∈ {0, 1}} (i.e. two keys per wire per corrupted party) and rebuilds

the garbled circuit just as P did (in the semi-honest case), but instead of using random keys of its

choice it uses the keys received as input for the corrupted parties I. Even though Procedure P

originally used to transform a view of the BMR execution into a view of the execution of our

protocol, we can use it to transform a view of our protocol into another view of our protocol (e.g.

by only changing the keys); this is exactly what we do in the simulation.

Procedure 2 (The Procedure P ′).

Input.

• A view v taken from distribution REALOur
A (x̄) or the output of SOUR.

• A set of keys KI = {kiw,j | i ∈ I, w ∈W, j ∈ {0, 1}}

Output. A view v′ which is the same as v, but in v the garbled circuit is built using the set of
keys KI from the input.

Execute the procedure P on v with the exception that in step 3a use the keys KI given as input
rather than choosing new ones for every key of parties I.

Claim 5. Denote by REALOur
A (x̄)(x̄) the view of the semi-honest adversary in our protocol when

61

the inputs of the parties are x̄, and denote by P ′(REALOur
A (x̄)(x̄),KI) the result of procedure P ′

applied on REALOur
A (x̄)(x̄) using the keys KI; then, given that the keys in KI are chosen uniformly

from Fp it follows that for every x̄

REAL
Our
A (x̄)

c≡ P ′(REAL
Our
A (x̄),KI) (4.5)

Proof. The proof follows identically the proof of Claim 2.

Corollary 5.1. Given that the keys in KI are chosen uniformly from Fp, the probability ensemble

of the view in the semi honest model REALOur
A (x̄) and the view when the procedure P ′ applied on it

(using KI), such that the ensembles are indexed by the inputs of the parties x̄, are

indistinguishable, that is

{REAL
Our
A (x̄)}x̄

c≡ {P ′(REAL
Our
A (x̄),KI)}x̄ (4.6)

The procedure H

We now define the procedure H (Procedure 3) which is given a view from the distribution

REALOur
A (x̄) and a set of PRF results FI (computed correctly or not) for every key of parties

{Pi}i∈I . The procedure returns a corresponding view in which the garbled circuit is computed as

if it was computed in a real execution of our protocol where the adversary inputs in the offline

phase the PRF results FI.

Let KI, as before, be the set of keys generated for the corrupted parties in the offline phase, and

λI be the set of masking values generated for the circuit output wires and for the wires that are

attached to the corrupted parties (i.e. the masking values that are in the adversary’s view). Note

that the PRF results that the corrupted parties input to the functionality (in the offline phase)

depend only on the adversary’s random tape r, and on the keys and masking values outputted to

them from the undelying MPC. That is, the PRF results that they provide can be seen as

A(r,KI, λI). Since the PRF results that the corrupted parties input to the functionality influence

only the resulted garbled gates, in the exact same manner as described in Procedure H; we get

the following:

62

Procedure 3 (The Procedure H).

Input. A view v taken from distribution REALOur
A (x̄) under the input x̄; and a set of PRF results

FI of F applied to the set of keys of parties {Pi}i∈I (that is, 2n PRF results for every key
{kiw,j | i ∈ I, w ∈W, j ∈ {0, 1}}
Output. A view v′ conforming to the message flow in REALOur

A (x̄) but with modified garbled
gates according to FI.
The view v contains all the keys belonging to the corrupted parties I, thus the procedure can tell
which of the PRF results in FI are computed correctly and which are not. Recall that FI can be
seen as a set of vectors from (Fp)n, formally, we denote the values in FI as follows (where g is the
gate to which wire w enters):

{F̃kiw,b
(0 ‖ 1 ‖ g), . . . , F̃kiw,b

(0 ‖ n ‖ g)}i∈I,w∈W,b∈{0,1}

{F̃kiw,b
(1 ‖ 1 ‖ g), . . . , F̃kiw,b

(1 ‖ n ‖ g)}i∈I,w∈W,b∈{0,1}

while the correct PRF values as:

{Fkiw,b
(0‖1‖g), . . . , Fkiw,b

(0‖n‖g)}i∈I,w∈W,b∈{0,1}

{Fkiw,b
(1‖1‖g), . . . , Fkiw,b

(1‖n‖g)}i∈I,w∈W,b∈{0,1}

The procedure changes the garbled gates in the view as follows:
Let g be a gate with input wires a, b and output wire c, from Functionality 3 we can see that

F̃kia,0
(0 ‖ j ‖ g) influences Ajg F̃kib,0(0 ‖ j ‖ g) influences Ajg

F̃kia,0
(1 ‖ j ‖ g) influences Bjg F̃kib,1(0 ‖ j ‖ g) influences Bjg

F̃kia,1
(0 ‖ j ‖ g) influences Cjg F̃kib,0(1 ‖ j ‖ g) influences Cjg

F̃kia,1
(1 ‖ j ‖ g) influences Dj

g F̃kib,1(1 ‖ j ‖ g) influences Dj
g

Thus, for every F̃kiw,b
(α ‖ β ‖ γ) of the above, the procedure computes the correct value Fkiw,b

(α‖
β ‖γ). Then it computes the difference

F∆
kiw,b

(α ‖ β ‖ γ) = F̃kiw,b
(α ‖ β ‖ γ)− Fkiw,b

(α‖β ‖γ)

Finally, it adds that difference to the appropriate coordinate in one of the vectors Ag, Bg, Cg, Dg

as described above. For instance. let F∆
kia,0

(0 ‖ j ‖ g) = F̃kia,0
(0 ‖ j ‖ g)− Fkia,0

(0‖ j ‖g) then the

procedure adds F∆
kia,0

(0 ‖ j ‖ g) to the value Ag given in v.

When done with those changes, the procedure outputs the resulted view v′.

63

Claim 6. Let REAL-MALOur
A,I (x̄)

KI,FI
be the view of the adversary (not the joint-view of all parties)

in the execution of our protocol in the malicious model where the keys that the adversary sees are

KI, and the PRF results that it provides are FI. Similarly, let REALOur
A (x̄)KI

be the view of the

adversary in the execution of our protocol in the semi-honest model where the keys that it sees are

KI. For every {KI,FI} it follows that

REAL-MAL
Our
A,I (x̄)

KI,FI
≡ H(REAL

Our
A (x̄)KI

,FI) = H(REAL
Our
A (x̄)KI

,A(r,KI, λI)) (4.7)

Proof. The proof follows immediately from the definition of the procedure H.

The simulator S ′OUR

As mentioned earlier, the simulator S ′OUR uses the procedures H and P ′ described above:

1. The simulator S ′OUR runs our protocol internally such that it takes the role of the honest

parties PJ and the trusted party, and uses the algorithm A to control the parties PI . The

simulator halt the internal execution right after it receives the external values ΛI to all the

corrupted parties in the online phase (that is, it halts after Step 1 of the online phase of

Protocol 1). From the internal execution the simulator S ′OUR can extract (learn) the

following values:

(a) The keys kIw,0, k
I
w,1 (of the adversary, in addition to the honest party’s keys kJw,0, k

J
w,1

since S ′OUR is the trusted party who chooses them) for every wire w.

(b) Masking values λ for all wires, in particular, the masking values of the circuit-input

wires that are attached to PI , i.e. λI.

(c) The values FI, i.e. 2n results for every key. Since S ′OUR is the trusted party in the

internal execution, it also knows the PRF results for the honest parties’ keys. We

denote the set of PRF results (for all keys, both adversary’s and honest party’s) as F.

Moreover, observe that S ′OUR can check whether A has cheated in FI.

(d) From λI and ΛI the simulator S ′OUR can conclude A’s input to the functionality xI .

64

2. Now, focusing on the ideal world, the honest parties and S ′OUR (this time as the adversary)

send their inputs to the trusted party. S ′OUR sends xI (that was extracted earlier).

3. The simulator S ′OUR receives the output yI from the trusted party.

4. S ′OUR now knows A’s input to the functionality xI and the output of f on xI and xJ (where

xJ remains hidden to it), it computes v = SOUR(1κ, I, xI , yI).

5. The simulator S ′OUR computes v′ = P ′(v,KI).

6. The simulator S ′OUR computes v′′ = H(v′,FI) (note that FI = A(r,KI, λI)).

7. Having the modified view v′′ and the garbled circuit GCM within it, S ′OUR now evaluates

the circuit on behalf of the honest players with the inputs xI and xJ = 0|J |.2 If they abort

then S ′OUR instructs the trusted party to not send the output yJ to PJ (i.e. to output ⊥).

Otherwise, if the evaluation succeeds then S ′OUR instructs the trusted party to output the

correct output yJ . 3

8. The simulator S ′OUR outputs the view v′′ as the adversary’s simulated output.

Indistinguishability: Real vs. Ideal

To complete the proof of security in the malicious model we have to prove the following:

Claim 7. The distribution ensemble of the output of the parties under the simulation of S ′OUR

and under the real execution of our protocol are indistinguishable.

Formally, let {REAL-MALOur
A,I (x̄)}x̄ be the probability ensemble (indexed by the inputs of the parties)

of the view of the parties that are under the control of the adversary A in the real execution of our

protocol and {IDEAL
S′OUR
A (x̄)}x̄ be the probability ensemble of their view in the execution aided by a

trusted party (i.e. in the ideal model with the simulator S ′OUR), then:

{REAL-MAL
Our
A,I (x̄)}x̄

c≡ {IDEAL
S′OUR
A (x̄)}x̄

2Note that the correctness property shown earlier holds for every input of the honest parties xJ , thus, in order to
decide whether to instruct the trusted party to ’halt’ or ’continue’ S ′

OUR can just use some fake input xJ = 0|J|.
3The decision whether to abort or not is not based on whether the adversary cheated or not, but rather, based on the actual

evaluation of the circuit because there might be cases where the adversary cheats and influence only the corrupted parties, e.g.
when cheating in i-th PRF values used in a garbled gate of some gate whose output wire is a circuit output wire (where i ∈ I).

65

Proof. Immediate from the proof of Claim 8, that is, in Claim 8 we state the same thing, and

prove it for every possible set of inputs of the players x̄.

Claim 8. For every x̄ it holds that

REAL-MAL
Our
A,I (x̄)

c≡ IDEAL
S′OUR
A (x̄)

Proof. Let V AREAL-MAL(x̄) be the view of the adversary in the real execution of our protocol (i.e.

the view of the adversary that is taken from REAL-MALOur
A,I (x̄)) and V

A,S′OUR
IDEAL (x̄) be the view of the

adversary that the simulator SOUR
′ outputs; also, let OJREAL-MAL(x̄) be the output of the honest

parties in the real execution of the protocol and O
J,S′OUR
IDEAL (x̄) be their output in the ideal model.

We can obviously restate our claim as:

{V AREAL-MAL(x̄), OJREAL-MAL(x̄)} c≡ {V A,S
′
OUR

IDEAL (x̄), O
J,S′OUR
IDEAL (x̄)}

Given that V AREAL-MAL(x̄)
c≡ V A,S

′
OUR

IDEAL (x̄) (which is proven in Claim 9) we now prove the above by

a reduction. Assume by contradiction that there exist a PPT distinguisher D and a non-negligible

function ε in κ such that

|Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]− Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′OUR
IDEAL (x̄)}) = 1]| = ε(κ)

we describe a distinguisher D′ that is able to distinguish between V AREAL-MAL(x̄) and V
A,S′OUR
IDEAL (x̄)

with non-negligible probability; note that since we prove the above for every choice of x̄ the

distinguisher may use x̄ in its algorithm. The distinguisher D′ act as follows:

1. The distinguisher D′ is given a view v of the adversary which is either from a real execution

of the protocol or a simulated view, i.e. either V AREAL-MAL(x̄) or V
A,S′OUR
IDEAL (x̄).

2. The view v contains the garbled circuit constructed either by the players or by the

simulator, moreover, as mentioned above, D′ knows the inputs of all parties (because we

prove the claim for specific choice of x̄), thus, D′ evaluate the circuit using x̄ and assign the

output of the honest parties into yJ .

66

3. The distinguisher D′ hands {v, yJ} to D and outputs whatever it outputs.

From the correctness property shown in the proof of Claim 4 it follows that if v has been taken

from V AREAL-MAL(x̄) then {v, yJ} and {V AREAL-MAL(x̄), OJREAL-MAL(x̄)} are indistinguishable,

otherwise, if v has been taken from V
A,S′OUR
IDEAL (x̄) then {v, yJ} and {V A,S

′
OUR

IDEAL (x̄), O
J,S′OUR
IDEAL (x̄)} are

indistinguishable due to the simple fact that the distinguisher D′ does exactly what the honest

parties do in the real execution. Formally:

|Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]− Pr[D′(V AREAL-MAL(x̄)) = 1]| = ε2(κ)

|Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′OUR
IDEAL (x̄)}) = 1]− Pr[D′(V A,S

′
OUR

IDEAL (x̄)) = 1]| = ε3(κ)

where ε2(κ) and ε3(κ) are negligible. It follows that

Pr[D′(V AREAL-MAL(x̄)) = 1] = Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]− ε2(κ) and

Pr[D′(V A,S
′
OUR

IDEAL (x̄)) = 1] = Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′OUR
IDEAL (x̄)}) = 1]| − ε3(κ)

and thus

Pr[D′(V AREAL-MAL(x̄)) = 1]− Pr[D′(V A,S
′
OUR

IDEAL (x̄)) = 1] = ε(κ)− ε2(κ) + ε3(κ)

which is non-negligible, in contradiction to the result in Claim 9.

Claim 9. Let V AREAL-MAL(x̄) be the view of the adversary in the real execution of our protocol and

V
A,S′OUR
IDEAL (x̄) be the view of the adversary outputted by the simulator SOUR

′ such that in both cases

the inputs to the protocol are x̄. For every x̄ it holds that

V AREAL-MAL(x̄)
c≡ V A,S

′
OUR

IDEAL (x̄)

67

Proof. From the above definitions of Procedure P ′ and H we get:

REAL-MAL
Our
A,I (x̄)

KI,FI
≡ H(REAL

Our
A (x̄)KI

,FI)

c≡ H(P ′(REAL
Our
A (x̄)KI

),FI)

c≡ H(P ′(SOUR(1κ, I, xI , yI)KI
),FI)

Where the first equality is given from Equation 4.7, the second follows from 4.5 and the third

follows from the operation of the simulator of the semi-honest model. That is, if there exist a

distinguisher who succeed to distinguish between V AREAL-MAL(x̄) and V
A,S′OUR
IDEAL (x̄) with

non-negligible probability then we can easily construct a distinguisher who is able to distinguish

between REALOur
A (x̄) and SOUR(1κ, I, xI , yI) in contradiction to the security in the semi honest

model.

68

Bibliography

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Piotr Rudnicki, editor, Proceedings of the
Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton,
Alberta, Canada, August 14-16, 1989, pages 201–209. ACM, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Harriet Ortiz, editor, 22nd STOC, pages 503–513. ACM, 1990.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS, pages 257–266. ACM, 2008.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 364–369. ACM, 1986.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.
Implementing AES via an actively/covertly secure dishonest-majority MPC protocol.
In Ivan Visconti and Roberto De Prisco, editors, SCN 2012, volume 7485 of LNCS,
pages 241–263. Springer, 2012.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS, volume 8134 of LNCS, pages 1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Safavi-Naini and Canetti
[SC12], pages 643–662.

[GHKL08] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness
in secure two-party computation. In Cynthia Dwork, editor, Proceedings of the 40th

69

Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 413–422. ACM, 2008.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages
171–185. Springer, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
19th STOC, pages 218–229. ACM, 1987.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively
secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
549–560. ACM, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Moni Naor, editor, Advances
in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007, Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 52–78.
Springer, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Safavi-Naini and Canetti [SC12], pages 681–700.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267. Springer, 2009.

[SC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 160–164. IEEE Computer Society, 1982.

70

Appendix A

A Generic Protocol to Implement
Foffline

In this Appendix we give a generic protocol Πoffline which implements Foffline using any protocol
which implements the generic MPC functionality FMPC. The protocol is very similar to the
protocol in the main body which is based on the SPDZ protocol, however this generic
functionality requires more rounds of communication (but still requires constant rounds). Phase
Two is implemented exactly as in section 3, so the only change we need is to alter the
implementation of Phase One; which is implemented as follows:

1. Initialize the MPC Engine: Call Initialize on the functionality FMPC with input p, a
prime with 2κ < p < 2κ+1.

2. Generate wire masks: For every circuit wire w we need to generate a sharing of the
(secret) masking-values λw. Thus for all wires w the players execute the following commands

• Player i calls InputData on the functionality FMPC for a random value λiw of his
choosing.

• The players compute

[µw] =
n∏
i=1

[λiw],

[λw] =
[µw] + 1

2
,

[τw] = [µw] · [µw]− 1.

• The players open [τw] and if τw 6= 0 for any wire w they abort.

3. Generate garbled wire values: For every wire w, each party i ∈ [1, . . . , n] and for
j ∈ {0, 1}, player i generates a random value kiw,j ∈ Fp and call InputData on the

functionality FMPC so as to obtain [kiw,j]. The vector of shares [kiw,j]
n
i=1 we shall denote by

[kw,j].

71

