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Abstract

The alignment of two similar graphs from different domains is a well studied problem. In many
practical usages, there are no reliable labels over the vertices, leaving structural similarity as the
only information available to match such graph. To simplify the matching, one often assumes
a small amount of already aligned vertices - called a seed. The current state-of-the-art scalable
seeded alignment algorithm is based on percolation. Namely, aligned vertices are used to align
their neighbors and gradually percolate in parallel in both graphs. The ’ExpandWhenStuck’ algo-
rithm improve former percolation algorithm by generating an inaccurate artificial seed whenever
the percolation is stuck, leading to better results using smaller seeds in Erdos Renyi graphs.
However, percolation based graph alignment algorithm are still limited in scale free degree distribu-
tions. We here propose ’IRMA’ - Iterative Repair for graph MAtching to show that the ’Expand-
WhenStuck’ can be extended to high performance on real world graphs with a limited additional
computational cost. IRMA starts by creating a primary alignment using ’ExpandWhenStuck’, then
it iteratively repairs the mistakes in the previous alignment steps.
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1 Introduction

Graphs are commonly used in different real-world applications, such as social and communication
networks. We denote a graph as G = (V,E), where V is the set of nodes and E is the set of edges,
i.e. a collections of pairs of nodes.

Our research is focused on the ’Seeded Graph Matching’ problem that is a variation of the Max-
imum Common Subgraph (MCS) problem, specifically for large graphs, i.e. graphs that contain
hundreds of thousands and even millions of nodes. Given two graphs G1 and G2, the MCS(G1, G2)
is the largest graph H s.t. H ⊆ G1, G2. Since the terms ’largest graph’ and ’H ⊆ G’ have more
than one definition, the MCS problem have several versions. The MCS is known to be NP-hard
and therefore only approximate solutions have been discussed in the literature on a large scale. As
it is described later in this paper, we use additional information called ’seed’ as an input in order
to allow large graphs yet accurate results.

In this section, we first introduce the common idea MCS problems, then we introduce the dif-
ference between Maximum Common Edges Subgraph (MCES) and Maximum Common Induced
Subgraph (MCIS), and their seeded and approximate versions. Finally, we present our area of re-
search called ’seeded graph matching’ along with different variants of the problem, caring the same
name.

1.1 MCS

The maximum common subgraph (MCS) problem require finding a large graph that is isomorphic
to subgraphs of two input graphs simultaneously and it is a way to determine the similarity between
two graphs. Because graphs are widely used to model real-world phenomena, the MCS problem
has arisen in biomedical analysis, malware detection, cloud computing, source code analysis, etc.
This is especially important in the task of drug design, where the successful extraction of common
substructures in compounds can reduce the number of experiments needed to be conducted by
humans [2]. Unfortunately, finding MCS is an NP-hard problem due to a simple reduction to the
Subgraph Isomorphism problem, resulting in exponential worst-case running time algorithms.

1.2 Definitions

Graph isormorphism - Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if and only
if there is a bijection f : V1 → V2 s.t. (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 .
Mapping - We here denote any bijection function from one group of nodes to another - a mapping.
Subgraph - Graph G1 is a subgraph of G2 if and only if V1 ⊆ V2 and E1 ⊆ E2

Induced subgraph - Graph G1 is an induced subgraph of G2 if and only if V1 ⊆ V2 and ∀v1, v2 ∈ V1

(v1, v2) ∈ E1 ⇐⇒ (v1, v2) ∈ E2.
Common (induced) subgraph - Graph H is a common (respectively, induced) subgraph of G1

and G2, if H is isomorphic to (respectively, induced) subgraphs of G1 and G2 simultaneously.

1.3 MCIS and MCES

In this proposal, we consist with the definitions presented in [17] to the versions of MCS. A max-
imum common induced subgraph (MCIS) consists of a graph H with the largest number of nodes
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that is a common induced subgraph of G1 and G2. A similar problem is the maximum common
edge subgraph (MCES). A graph that is a common subgraph of G1 and G2, with the largest number
of edges. Since in both problems each node of the subgraph is isomorphic to some v1 ∈ V1 and
v2 ∈ V2, we can say the MCES (or MCIS) map v1 to v2. We refer to that mapping as the MCES
mapping. As the mentioned mapping precisely defines the desired subgraph and its isomorphisms,
we mainly discuss the mapping construction.

In many practical usages of MCES, we have some former knowledge about the similarity between the
two graphs. Formally, given two large graphs G1 = (V1, E1) and G2 = (V2, E2) and the small sub-
groups S1 ⊆ V1, S2 ⊆ V2 with a mapping function M : S1 → S2 s.t. |S1| = |S2| << min(|V1|, |V2|),
the algorithm return a mapping F : V1 → V2 as in the MCES problem s.t. ∀v ∈ S1, F (u) = M(u).

State-of-the-art exact MCS detection algorithms have a worse case exponential cost [13, 7]. The
usefulness of MCS detection and the inefficiency of exact MCS solvers call for the design of approxi-
mate solvers. Such solvers reduce the running time, but also the accuracy. Some of the approximate
solvers based over advanced machine-learning method [2, 1], yet, approximate MCS algorithms are
either limited to an input of a few hundred nodes or provide inaccurate solutions.

1.4 Seeded Graph Matching

In graph matching (GM), one is given two graphs G1 and G2 known to model the same data (i.e.
there is an equivalence between the graphs vertices). For example, G1 may be the friendship graph
from the Facebook social network and G2 the friendship graph from the Twitter social network for
the same people. In both cases, the vertices are users and there is an edge between two vertices if
the corresponding users are friends in the relevant social network. We assume that friend in one
network have a higher than random probability of being friend in the second network.

The goal of GM is to create a bijection M : V1 → V2, such that M maps vertices in V1 to a
vertex in V2 if they represent the same real-world entities. In the example above M should con-
nect profiles in Facebook and Twitter that belong to the same person. Given a bijection M , if
M(v1) = v2, and M(v3) = v4, and the edge (v1, v3) ∈ E1, and (v2, v4) ∈ E2, the common edge
will be defined as a shared edge. The quality measure for the quality of M is usually the number
of shared edges.

Finding a full bijection is not always optimal, since some vertices may be absent from one of
the two graphs. We thus look for a partial bijection: M : Ṽ1 ⊂ V1 → Ṽ2 ⊂ V2, such that the
fraction of shared edges is maximal. A single edge bijection is obviously a simple solution to that.
Thus, a trade-off between the number of shared edges and the fraction of mapped vertices is often
required, by adding a constraint on the number of elements in Ṽ1.

In the presence of limited initial information on the bijection, one can use seeded GM. In seeded
GM, the input contains beyond (G1, G2), also a small seed ⊂ V1 × V2, which is a group of vertices
pairs known to represent the same real-world entities in G1 and in G2.
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1.5 Variants of Graph Matching

A similar problem emerges when the vertices have additional information named labels or meta-
data [12, 15]. For example, the users on Facebook and Twitter may have additional attributes,
such as age, address, and user names. It is obvious that a user named ”Bob Marley” in Facebook is
much more likely to represent the same person as a user with the same name on Twitter than a user
named ”Will Smith”. For that reason, labeled vertices are significantly simplifying the matching
problem, and pairs of vertices with highly similar attributes can be used as a seed. In out research,
we focus on seeded GM based, with no labels over the vertices.

MCS - (Maximum Common Sub-
graph)

Given two graphsG1 andG2, MCS(G1, G2) is the largest graphH
s.t. H ⊆ G1, G2. MCS might refer various of problems depending
on the definitions of common subgraph and graph’s size. MCS is
often an umbrella term for different similar tasks.

MCIS - (Maximum Common In-
duced Subgraph)

Given two graphs G1 and G2, MCIS(G1, G2) is a graph H with
the largest amount of nodes that is a common induced subgraph
of G1 and G2

MCES - (Maximum Common
Edges Subgraph)

Given two graphs G1 and G2, MCES(G1, G2) is a graph H with
the largest amount of edges that is a common subgraph of G1 and
G2

Seeded Graph Matching Given two correlated graphs G1 and G2 that are known to model
the same data, and a given a small group of pairs seed ⊂ G1 ×
G2 representing the same real-world objects, we want to find a
bijection M : V1 → V2 full or partial such that M map a node
in V1 to a node in V2 if they are representing the same real-world
object.

Variants of Graph Matching In some definitions of Graphs Matching we also given labels upon
the nodes, facilitating the process of matching.

2 Related Work

2.1 MCS Solvers

Since Graph Matching is strongly related to the MCS problem, we present here the state-of-the-art
exact MCIS solver along with two novel approximate solvers.

2.1.1 McSplit

McSplit [13] is state-of-the-art exact MCIS solver, based on node labeling and partitioning. The
algorithm builds up a mapping M using a depth-first search, starting with M = ∅ and adding a pair
(vi, wi) vi ∈ V1, wi ∈ V2 at each level of the search tree. At any stage, every node of both graphs
has a label li ∈ {0, 1}|M | representing either it is a neighbor to the relevant node in each pair in M .
The algorithm can only add a pair of nodes to M if they have the exact label. The labels are also
used as an upper bound for the possible extension of the current M , to avoid useless routes in the
search tree without fully explore them. This algorithm has no polynomial worst-case run time, yet
experiments show a speedup of more than an order of magnitude over the former state-of-the-art
exact MCIS solver.
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2.1.2 S-GWL

Scalable Gromov-Wasserstein Learning (S-GWL) [8] is an algorithm based on the Gromov-Wasserstein
discrepancy (GWD) with extremely low run-time at the expense of accuracy. Denote a measure

graph as G(V,C, µ) , where V = {vi}|V |i=1 is the set of nodes, C = [cij ] ∈ R|V |×|V |is the adjacency
matrix, and µ = [µi] ∈ Σ|V | is a Borel probability measure defined on V . For each p ∈ [1,∞] and
each measure graphs G1, G2, the Gromov-Wasserstein discrepancy between them is

dgw(Gs, Gt) := minT∈Π(µs,µt)(
∑
i,j∈Vs

∑
i′,j′∈Vt

|csij − cti′j′ |pTijTi′j′)1/p (1)

where Π(µs, µt) = {T ≥ 0|T1|Vt| = µs,T
>1|Vs| = µt}.

In their Algorithm, they use the T yielding dgw(Gs, Gt) as follows. Given two graphs G1, G2, they
defines a graph H with k nodes and computes dgw(Gi, H). By taking the highest value at each row
of the matching distribution, they can match each v ∈ Gi into u ∈ H, creating an approximation
to the k-partition for Gi. Then, they can solve the matching for each subgraph separately by
recursion. Since the computation of dgw is expensive, they approximated it is value using the
regularized proximal gradient method. The total complexity received is O((V +E)logV ) and their
accuracy is about 50% with a high variance [8, 2].

2.1.3 NeuralMCS

NeuralMCS [1] makes use of a node embedding method called Graph Matching Networks (GMN)
[22] designed for graph similarity computation. Based on the GMN’s result, they compute the
likelihood of matching each node in G1 to each node in G2. These values, indicates which node
pair is most likely to be in the MCIS, encodes into a matching matrix Y ∈ [0, 1]|G1||G2|. Then, the
matching starts by finding the most likely pair, and iteratively expands the extracted subgraphs
by selecting the most likely pair each time and keeping the extracted subgraph connected. The
procedure stops once the addition of any additional pair would lead to non-isomorphic subgraphs.
Experiments on four real graphs show that the model above is 31.78 faster than the exact solver
while achieving near-perfect accuracy in MCIS detection.

2.1.4 RLMCS

RLMCS [2] is a graph neural network based model for MCIS detection through reinforcement
learning. The model utilizes a novel Joint Subgraph Node Embedding (JSNE) network to perform
graph representation learning. This representation is fed into a Deep Q-Network (DQN) [14] to
predict action distributions. Finally, They use an exploration tree based on beam search to perform
subgraph extraction iteratively using the DQN results. The entire model is trained end-to-end in
the reinforcement learning (RL) framework. Experiments on real graph datasets demonstrate that
this model too achieves near-perfect accuracy in MCS detection while being slightly faster than
supervised neural graph matching network models.

2.2 Graph Matching Solvers

GM is a necessary function in many scientific disciplines including social networking, biology, com-
puter vision, etc [9]. In social networking Graph Matching can de-anonymize two data sets from
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different domains [11, 21]. It is also used on proteins from different species in biology to trace func-
tional equivalences [10, 18] and to discover a resembling between images in the domain of computer
vision [19, 4, 20].

An important aspect of GM is scaling, since its practical use is often in large graphs. Current
state-of-the-art scalable seeded GM methods are based on gradual percolation, starting from the
seed and expanding through common neighbors. This class of algorithms is refereed to as Per-
colation Graph Matching (PGM) methods [11, 21, 6]. Despite having in some cases additional
information in the form of labels, [6] showed the crucial importance of relying on edges during the
process of GM. Both [3] and [9] present an improvement to [21] and are currently state-of-the-art
PGM algorithms. Here we focus on [9] and improve it by presenting our Iterative Repair for graphs
MAtching (IRMA) algorithm.
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3 Methods

3.1 Notations

For convenience, we follow here the notations of ExpandWhenStuck (further denoted EWS) [9] with
minor changes (see Table 1 for list of notations).

Pair A pair [u, v] is [u, v] ∈ V1 × V2. Sometimes we refer to a pair p without
specifying that it is in V1 × V2.

Neighboring pair Given the graphs G1 = (V1, E1) and G2 = (V2, E2), the pairs
[u, v], [u′, v′] ∈ V1 × V2 are neighboring pairs, if there are edges (u, u′) ∈
E1 and (v, v′) ∈ E2.

Spreading out marks In the description of the matching algorithms, we refer to a pair p spread-
ing out marks as adding one mark to each neighboring pair of p.

MarkedPairs Contains marks-counters for all marked pairs.
Markst(p) Number of marks pair p received from other pairs until time t. scoret(p)

is defined accordingly.
scoret([u, v]) scoret([u, v]) = markst([u, v])−ε∗∆(d1,u, d2,v) for an infinitesimal ε > 0

where di,u is the degree of node u in graph i.
Marksi,t(p) Number of marks pair p received from other pairs during the i − th

iteration until time t. scorei,t(p) is defined accordingly.
M̄arksi,t(p) M̄arksi,t(p) = max(marksi,t(p),marksi−1,∞(p)). ¯scorei,t(p) is defined

accordingly.
R The ground-truth, i.e., the set of all pairs of vertices that represent the

same entity in both of the graphs.
Seed Seed ⊂ R is a small group of pairs given as input and known to contain

only correct matches.
A A set of pairs to spread out marks from. Used in EWS, initialized to

seed.
Z A set of pairs that already spread out marks. Used in EWS to prevent

repetitions.
M Set of all pairs matched by the algorithm. We refer to any pair in M as

’matched pair’ and any other pair as a candidate.
Pairs conflict We say that pairs [u′, v′], [u, v] ∈ V1 × V2 conflict if u = u′ and v 6= v′ or

vice versa. If a candidate pair p conflicts a matched pair p′, we say that
p conflicts M .

Weight(M) |{(u, v)|(u, v) ∈ E1, (M(u),M(v)) ∈ E2}|
s s ∈ [0, 1] - the probability that an edge should be sampled in V1 or in V2

Table 1: Main notations

3.2 Current State-of-the-art Algorithm

The current state-of-the-art algorithm to the above problem is ExpandWhenStuck [9]. In a nut-
shell, EWS (see code in Figure 1) starts by adding all the seed pairs into M , and spreading
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out marks to all of their neighbors. Then, at each time step t, EWS chooses a candidate pair
p′ = argmaxp(scoret(p)) that does not conflict M , adds it to M and spreads out marks to all of its
neighbors (see Figure 2). When there are no pairs left with more than one mark (line 15 in Figure
1), EWS creates an artificial noisy seed (A), and uses it to further spread out marks (line 6 in figure
1). A contains all pairs that are: 1) neighbors of matched pairs 2) do not conflict M 3) never have
been used to spread out marks. The novelty of EWS is the generation of an artificial seed whenever
there are no more pairs with more than one mark. The artificial seed is mostly wrong. Yet, EWS
manages to use it to match new correct pairs and continue the percolation. At the end of EWS,
the set of mapped pairs M is returned along with MarkedPairs that contains counters of marks
for all marked pairs. The last is not needed in EWS, but is used in IRMA. The main contribution
of EWS is a dramatic reduction in the size of the required seed set for random G(n, p) networks
(graph with n vertices and a probability of p for each edge).

ExpandWhenStuck

1: A← seed is the initial set of seed pairs, M ← seed;
2: Z ← ∅ is the set of used pairs
3: MarkedPairs← ∅ is the set of all marked pairs along with their number of marks
4: while (|A| > 0) do
5: for all pairs [i, j] ∈ A do
6: Add the pair [i,j] to Z and add one mark to all of its neighboring pairs;
7: end for
8: while there exists an unmatched pair with at least 2 marks in MarkedPairs that does not

conflict M do
9: among those pairs select the one maximizing score(p);

10: Add p=[i,j] to the set M ;
11: if [i,j] /∈ Z then
12: Add one mark to all of its neighboring pairs and add the pair [i,j] to Z;
13: end if
14: end while
15: A← all neighboring pairs [i,j] of matched pairs M s.t. [i,j]/∈ Z, i /∈ V1(M) and j /∈ V2(M);
16: end while
17: return M , MarkedPairs;

Figure 1: Current state-of-the-art algorithm for Seeded Graph Matching. Base over percolation
method, which is highly scale-able, to gradually map neighboring pairs of matched pairs.
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Figure 2: ExpandWhendStuck example. Given the seed {(a1,b1),(a2,b2)} on the left hand side,
(a1,b1) spread out marks to the Cartesian product {a5}*{b2,b3,b5} (green column) and (a2,b2)
spread out marks to {a4,a5}*{b1,b4,b5} (blue column). Marked pairs conflicting the seed have
been crossed out while (a5,b5) has been marked in bold for having the most marks. On the right
hand side (a5,b5) been painted in yellow for getting into M and marks have been spread out to
{a1,a2,a4}*{b1,b2,b4} (yellow column). We marked (a4,b4) in bold for being the next pair to be
inserted into M .

3.3 Evaluation Methods and Stopping Criteria

We use precision and recall to evaluate the performance of algorithms: (i) Precision refers to the
fraction of errors in the set of matched vertices (i.e., pairs in M that are in R), and (ii) Recall is
the size of the intersect of M and R out of the size of R as

Precision =
Λ(M)

|M |
, Recall =

Λ(M)

|R|
, (2)

where Λ(M) is the number of correct pairs in M and R is the set of all pairs of vertices that
represent the same entity in both of the graphs.

To compare the performance of GM algorithms, we also report the F1–score, defined as:

F1− score = 2
precision× recall
precision+ recall

. (3)

The scores above (Recall, Precision, and F1) can only be computed based on known ground truth,
yet it is useful to approximate the quality of a solution during the run time, assuming no known
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ground truth. Namely, given an input to the seeded-GM problem and two possible maps M,M ′ :
V1 → V2 we want to determine which of the two is better. We use weight(M) as a score for the
quality of a mapping M :

weight(M) = |{(u, v)|(u, v) ∈ E1, (M(u),M(v)) ∈ E2}|. (4)

3.4 Generating correlated graphs

To examine the performance of seeded GM algorithms, one needs a pair of graphs, where at least
a part of the vertices corresponds to the same entities. EWS used a simple probabilistic sampling
method over a single given graph to create two correlated graphs with different levels of similarity.

We follow the same method. Specifically, given G = (V,E) and s, we generate G1 = (V1, E1),
and G2 = (V2, E2) by twice randomly and independently removing edges e ∈ E with a proba-
bility of 1 − s. We then remove vertices with no edges. The edge overlap between G1 andG2

increases with s. EWS used only s ∈ [0.7, 0.9]. Using IRMA, we show that a high F1 score can be
obtained for the range of s ∈ [0.4, 0.9]. Note that given (G, s), a vertex v ∈ G with k neighbors
contained in both G1, G2 has an expected degree of s2k in G1∩G2. We name s the ’graphs-overlap’.

3.5 Data Sets

For fully simulated graphs, we use the above sampling method over G(n, p) Erdos-Renyi graphs
[5], defined as a graph with n vertices, where every edge of the possible

(
n
2

)
exists with a proba-

bility of p. It is common to mark two graphs created by sampling from an Erdos-Renyi graph as
G1, G2 = G(n, p, s) [16].

To test our algorithm on graphs that better represent real-world data, yet to control their level
of similarity, we used sampling over the following real-world graphs (further denoted as graph 1,
graph 2, and so on, according to their order here (Table 2)).

Number Name Nodes Edges Average degree
1 Fb-pages-media 27,900 206,000 14
2 Soc-brightkite 56,700 212,900 7.8
3 Soc-epinions 26,600 100,100 7.9
4 Soc-gemsec-HU 47,500 222,900 9.4
5 Soc-sign-Slashdot081106 77,300 516,600 12.1
6 Deezer europe edges 28,300 92,800 6.6

Table 2: Real world data set graphs.

1. Fb-pages-media - Data collected about Facebook pages (November 2017). These datasets
represent verified Facebook page graphs of different categories. Vertices represent the pages
and edges are mutual likes among them (http://networkrepository.com/fb-pages-media.php).
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2. Soc-brightkite - Brightkite is a location-based social networking service provider where users
shared their locations by checking-in. The dataset contains all links among users
(http://networkrepository.com/soc-brightkite.php).

3. Soc-epinions - Controversial Users Demand Local Trust Metrics: An Experimental Study on
epinions.com Community (http://networkrepository.com/soc-epinions.php).

4. Soc-gemsec-HU - The data was collected from the music streaming service Deezer (November
2017). These datasets represent friendship graphs of users from 3 European countries. Vertices
represent the users and edges are the mutual friendships. We re-indexed the vertices in order to
achieve a certain level of anonymity. The edge files that contain the edges - vertices are indexed
from 0. The json files contain the genre preferences of users - each key is a user id, the genres
loved are given as lists. Genre notations are consistent across users. In each dataset users could
like 84 distinct genres. Liked genre lists were compiled based on the liked song lists. The
countries included are Romania, Croatia and Hungary (http://networkrepository.com/soc-
gemsec-HU.php).

5. Soc-sign-Slashdot081106 - Slashdot Zoo signed social network from November 6 2008. It
is noteworthy that this graph was also used in [9] (http://networkrepository.com/soc-sign-
Slashdot081106.php).

6. Deezer europe edges - A social network of Deezer users which was collected from the public
API in March 2020. Vertices are Deezer users from European countries and edges are mutual
follower relationships between them. The vertex features are extracted based on the artists
liked by the users. The task related to the graph is binary node classification - one has to
predict the gender of users. This target feature was derived from the name field for each user
(http://snap.stanford.edu/data/feather-deezer-social.html).

3.6 Second Run

The EWS algorithm has a greedy property. At step t, it adds to M the pair maximizing scoret(p).
Assume that at time t the algorithm chooses some wrong pair [u′, v], in particular, scoret([u

′, v]) >
scoret([u, v]) for the correct pair [u, v]. Let us further assume that [u, v] will receive many marks
from neighbors later in the algorithm, such that score∞([u′, v]) < score∞([u, v]) . Such a scenario
is highly likely, since we argue that correct pairs tend to reach a high score. Yet, [u, v] will never
get into M as it conflicts with another pair in it ([u′, v]).

We use the accumulation of scores ( score∞([u′, v]) < score∞([u, v])) to improve the matching.
We suggest to perform a second iteration in which wrong matched pairs could be fixed. Since
matched pairs are spreading out marks at the second iteration as well, let us define marki,t(p)
as the number of marks gained by pair p during the i-th iteration until time t; scorei,t(p) is de-
fined accordingly as marksi,t([u, v]) − ε ∗ ∆(d1,u, d2,v). Base on those scores we can establish
m̄arkt(p) = max(mark1,∞(p),mark2,t(p)), ( ¯scoret(p) defined accordingly) the second iteration
uses ¯scoret(p) as presented in Figure 3. First it initializes M to be the seed set, then, at time
t, while there exists a candidate pair with m̄arkt(p) > 1, we add into M the pair p maximizing

¯scoret(p) among those who do not conflict M and then spread marks out of it.
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Second Run

1: M1,MarkedPairs1 ← ExpandWhenStuck(A0) is the map and set of all marks from the first
run

2: MarkedPairs2 ← ∅,M2 ← A0

3: spread out marks from all pairs in M2

4: while there exists an unmatched pair with at least 2 marks in MarkedPairs1 or MarkedPairs2

that does not conflict M2 do
5: Among those pairs select the pair p = argmaxp{ ¯scoret(p)};
6: Spread out marks from p (updating MarkedPairs2) and add it to the set M2;
7: end while
8: return M2

Figure 3: Second-Run starts by running ExpandWhenStuck (iteration 1), then it builds M2 based
on the information gained during both first and second iterations using the function ¯scoret(p).

3.7 Iterative approach

The next natural stage will be to add a third run of the algorithm. In fact, we can use m̄arki,t(p) =
max(marki,t(p),marki−1,∞(p)) to run over and over again until no better map is achieved. We
present a pseudo code to the Repairing-Iteration and IRMA in Figures 4 and 5, respectively. IRMA
starts with the initialization of M to be the seed set, then it performs a standard EWS iteration.
In the following iterations, at time t, while there exists a candidate pair with m̄arkt(p) > 1, IRMA
adds to M the pair p maximizing ¯scoret(p) among those that do not conflict M , and spread marks
out of it.

IRMA stops the iterations when the mapping quality stops increasing. Formally, the i-th itera-
tion starts by initializing M = seed, then, at time t, it adds to M the candidate pair obeying:

p = argmaxp{ ¯scorei,t(p)}, (5)

and spreads marks out of it - updating marki,t. The iteration ends when no candidate pair p, that
does not conflicts M , satisfies m̄arki,t(p) > 1.

Since we do not know the real mapping, we use weight(M) to estimate the quality of the score at
the current iteration (section 3.3). We compute weight(Mi) ∀i where Mi is the matching at the
end of the i-th iteration. Whenever weight(Mi) ≤ weight(Mi−1), the algorithm stops and returns
Mi−1. In practice, to avoid many redundant iterations with a limited increase in weight(M), the
algorithm stops when weight(M) ≤ (1 + δ) ∗ weight(Mi−1), where δ was empirically set to 0.01.
Note that this does not ensure convergence of the mapping, only of its score.
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Repairing Iteration

1: MarkedPairsi is an input of all marks from the previous iteration
2: MarkedPairsi+1 ← ∅, M ← A0;
3: Spread out marks from all pairs in M
4: while there exists an unmatched pair with at least 2 marks in MarkedPairsi or
MarkedPairsi+1 that does not conflict M do

5: Among those pairs select the pair p = argmaxp{ ¯scoret(p)};
6: Add p to the set M ;
7: Add one mark in MarkedPairsi+1 to all of its neighboring pairs and add the p to Z
8: end while
9: return M,MarkedPairsi+1

Figure 4: Repairing Iteration is a generalization ’Second Run’. It receive the marks from previous
iteration along with the seed as input and builds a map considering the marks gained at the previous
and current iteration.

IRMA (Iterative Repair for graph MAtching)

1: M,MarkedPairs← ExpandWhenStuck(A0)
2: M0 = ∅
3: while weight(M) > (1 + δ) ∗ weight(M0) do
4: M0 = M
5: M,MarkedPairs← RepairingIteration(MarkedPairs)
6: end while
7: return M

Figure 5: IRMA builds a primary map using ExpandWhenStuck and repeatedly improves it by
running ’Repairing Iteration’. It uses wight(M) as an indication for convergence by the stop
condition appears in line 3.

3.8 Expansion Boost

Each iteration is built of the main while-loop with a break condition of having no candidate pair,
with at least two marks, that does not conflict M . The threshold of marks has been determined
to two as a trade-off between the scores of precision and recall. If one sets the threshold to a high
value, M will only contain pairs with high confidence, yet the percolation will stop early - leading
to high precision but low recall. Similarly, setting the threshold to one will increase recall at the
expense of precision.

We suggest performing one ”noisy iteration” with a threshold of one after IRMA has been con-
verged, expecting the precision to drop at the expense of an increase in recall. Then, we run regular
repairing iterations again to gradually restore the precision. The idea is that while wrong pairs
could not comply with the next iterations’ threshold of two marks, correct pairs might lead to un-
explored areas of the graphs. Such pairs gain marks by their newly revealed neighbors, a-posteriori
justifying their insertion to M .
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3.8.1 Break Condition

Since the iterations performed after the ’noisy iteration’ are meant to filter out pairs with lower
certainty, we can no longer expect |weight(M)| to increase between iterations. In practice, the
second stage of IRMA (after the expansion boost), restores the precision within few iterations and
afterwords has no significant improvement from Mi to Mi+1. We thus empirically set the algorithm
to always stop after four repairing iterations.

3.9 parallel version

In order to develop a GPU version of IRMA, we propose a parallel version. The bottleneck of
EWS is in spreading out marks from [u, v], costs deg1(u) ∗ deg2(v) updates to the queue of marks.
Ideally, we would like to perform multiple mark spreading steps in parallel. However, this is not
immediately possible since the pair chosen at time t depends on the marks that have been spread
out earlier, including those of time t − 1. Section 6.3 in [9] presents a paralleled version in which
the main loop has been split into epochs. This version of EWS starts by spreading out marks
from the seed, then at each epoch the algorithm greedily takes all possible pairs from the queue
one by one - without spreading any mark. When the queue is eventually empty, it simultane-
ously spreads marks from all pairs selected at the current epoch, creating the queue to the next
epoch. This method has the advantage of being extremely fast, allowing input graphs with mil-
lions of vertices, and has been argued not to fundamentally affect the performance of the algorithm.

We used a similar logic to parallelize iterations as follows (see Figure 6 for pseudo code). The
i-th iteration gets queuei−1 as input and starts by greedily adding all possible pairs from the queue
into Mi one by one - without spreading any mark. Then, when the queue is eventually empty, we
simultaneously spread out marks from all pairs in Mi creating queuei. Iteration i returns Mi and
queuei.

Parallel Repairing Iteration

1: MarkedPairsi−1 is an input of all marks from the previous iteration.
2: MarkedPairsi ← ∅, Mi ← A0;
3: while there exists an unmatched pair with at least 2 marks in MarkedPairsi−1 or
MarkedPairsi that does not conflict Mi do

4: Among those pairs select the pair p = argmaxp{scorei−1,∞(p)};
5: Add p to the set Mi;
6: end while
7: MarkedPairsi ← marks that has been spread out from all Mi in parallel
8: return Mi,MarkedPairsi

Figure 6: In order to allow spreading out marks in parallel, we no longer base over the marks of
current iterations. It enables us to perform this stage simultaneously at the end of the iteration
(line 7).
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4 Results

4.1 ExpandWhenStuck on Erdos-Renyi graphs

IRMA is an improvement of EWS [9]. We first tested the accuracy of EWS on a set of fully simu-
lated graphs as done in the original paper (see section 3.5 for detailed information). As a remainder
we use a base graph (simulated or given) to create two partially overlapping graphs by twice re-
moving edges from it. The fraction of edges from the original graph (G) maintained in each of
the partially overlapping graphs G1, G2 is denoted s. We use a value of s in the range of [0.4, 0.8].
Using s ∈ {0.7, 0.8, 0.9} and p = 20/n on Erdos-Renyi graphs, EWS reported matching correctly
almost every node by a few dozen seeds. To further research the performance of EWS, we used

graphs with p ∈ {20

n
,

30

n
,

40

n
} and expanded the graphs overlap (s) to the range [0.4, 0.8].

Figures 7 - 9 present the algorithm results (precision, recall, and F1, respectively) with different
graphs-overlap (s) values. According to eq. 2, since EWS percolates smoothly on G(n, p, s) graphs
(i.e, |M | = |R|), precision, recall, and F1-score should be identical. In addition, one can notice that
all accuracy measures are highly sensitive to s. The reason is that a correct pair [u, v] ∈ G1 ×G2,
corresponding to vertex w ∈ G with degree d, has an expected number of s2d common neighbors,
which also, approximately the number of marks it will get. In random G(n, p) graphs, most vertices
have similar degree (a normal distribution of degrees), and if s2 ∗ E(d) > 2, EWS typically works.
More precisely, [9] present a simplified version to the EWS that is much easier to analyze and
computes the threshold seed size in order for the algorithm to correctly match G(n, p, s) graphs.

Under several assumptions they found an upper bound of O(
1

np4s4
).

Figures 10 - 12 represent the algorithm results (precision, recall, and F1, respectively) along differ-
ent seed sizes. Those figures consistent both with the claim that precision, recall, and F1 should
be identical when running over G(n, p, s) graphs and with the expected advantage of high degree
graphs and high graphs-overlap (s).
In order to better understand the algorithm, in Figure 13 we produced several indices during a
single run of the algorithm on G(104, 10/104, 0.7) graphs with |seed| = 50.

• Sub-figure 13a represents a binomial degree distribution with an expectation of np = 10.

• Sub-figure 13b represents the local precision using a sliding window of 30. Mistakes accumulate
only at the beginning and at the end of the algorithm, most likely due to a low number of
marks (as can be seen in sub-figure d).

• Sub-figure 13c represents the degree of pairs inserted to M , ordered by insertion time (we
define pair’s degree to be the sum of its nodes’ degrees). In both sub-figures c and d, sliding
windows have been used to smooth the graphs. Correctly matched pairs has been differenti-
ated from wrong ones by color. The straight orange line in the range [2000, 9000] represents
the absence of mistakes in this time window. It is clear from the plot that high degree pairs
tend to gain marks much faster than low ones, thus were matched earlier. We suggest that at
the beginning of the algorithm the degree of wrong pairs is very much like correct ones since
not enough marks have been spread to distinguish between them. However, wrong pairs at
the end of the algorithm have match higher degree since it increases their probability to gain
marks, allowing them to be matched despite being incorrect.
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• Sub-figure 13d represents the number of marks each pair had at the moment of insertion into
M , ordered by insertion time. The number of marks is gradually decreasing over time up to
the point where only low degree pairs remain as candidates pairs (see sub-figure c). From this
point on, the number of marks is gradually decreasing as candidate pairs have lower and lower
degrees, and they are unable to gain many marks. The wrong pairs have fewer marks than
correct ones since mistakes typically happen when there are only candidates with few marks.
The noticeable difference between them is caused by the sliding window used to smooth the
plots.
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Figure 7: ExpandWhenStuck algorithm: Precision as a function of graphs-overlap (s). Sub-figure
a and sub-figure b use 30 and 200 random seeds, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green). Precision has the exact same values as recall,
and F1-score (Figures 8,9). Another observation is a high sensitivity to the graphs-overlap and the
graphs average degree.
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Figure 8: ExpandWhenStuck algorithm: Recall as a function of graphs-overlap (s). Sub-figure a
and sub-figure b use 30 and 200 random seeds, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green).
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Figure 9: ExpandWhenStuck algorithm: F1-score as a function of graphs-overlap (s). Sub-figure a
and sub-figure b use 30 and 200 random seeds, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green).
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Figure 10: ExpandWhenStuck algorithm: Precision as a function of seed size. Sub-figure a and
sub-figure b use graphs-overlap (s) of 0.5 and 0.7, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green).
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Figure 11: ExpandWhenStuck algorithm: Recall as a function of seed size. Sub-figure a and sub-
figure b use graphs-overlap (s) of 0.5 and 0.7, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green).
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Figure 12: ExpandWhenStuck algorithm: F1-score as a function of seed size. Sub-figure a and
sub-figure b use graphs-overlap (s) of 0.5 and 0.7, respectively, and run over G(104, 0.002, s) (blue),
G(104, 0.003, s) (orange) and G(104, 0.004, s) (green).
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ExpandWhenStuck on G(104,
10

104
, 0.7) with |seed| = 50
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Figure 13: ExpandWhenStuck over G(104, 0.001, 0.7) with |seed| = 50: Sub-figure b indicates high
performances, with mistakes only A) at the beginning of the algorithm - when not enough marks
have been spread (see sub-figure c), and B) at the end - when only low degree pairs were left as
candidates (see sub-figure d).

4.2 ExpandWhenStuck on Real World Graphs

We extend our tests on ExpandWhenStuck using real-world graphs, see section 3.5 for detailed
information about the selected graphs. We again use each of those graphs to create two overlapping
graphs by the above sampling method. Given (G, s) we generate G1, G2 by inserting each of G’s
edges to G1 and G2 independently with probability s.

Figures 14, 15 represent precision, recall and F1-score of ExpandWhenStuck over graphs 2 and
graph 4 (other graphs are similar) with graphs overlap (s) value of 0.4, 0.5, 0.6, 0.7, 0.8 (a-e, re-
spectively) as a function of seed size. Figures 16, 17 represents precision, recall and F1-score of
ExpandWhenStuck over graphs 1 and graph 3 with different seed size as a function of the graphs
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overlap (s). One can still see the high sensitivity to the graphs-overlap value and the threshold
nature of the seed size. Yet, even with higher seed size, performances are significantly lower, and
there is a consistent large gap between recall and precision. The proportions between precision and
recall are equal to the one between |M | and |R| (eq. 6), i.e., the algorithm struggle to percolate
through the entire graphs.

recall

precision
=

Λ(M)

|G1 ∩G2|
Λ(M)

|M |

=
|M |
|R|

(6)

Since in scale free degree distributions most vertices obey d < E(d), many correct pairs cannot
collect enough marks. As a result, M often contains only part of the possible pairs to match.

In order to better understand the algorithm on real-world graphs, in Figure 18 we produced sev-
eral indices during a single run of the algorithm on graph 6 with graphs-overlap (s) of 0.7 and
|seed| = 480.

• Sub-figure 18a represents a power-law degree distribution characterized by a long left tail.

• Sub-figure 18b represents the local precision using a sliding window of 30. The reason for
lower precision in power-law degree distribution graphs is its cluster nature. The graph is
built such that there are a lot of nodes sharing many common neighbors, creating wrong
candidates pairs with many marks. The drop in the precision around times 5000 and 9000
was caused by a generation of an artificial seed, adding a lot of wrong marks in exchange for
keeping on the percolation process.

• Sub-figure 18c represents the degree of pairs inserted to M by the order of insertion, i.e., at
time = t we can see the degree of pair p inserted to M at time t (we define pair’s degree to be
the sum of its nodes’ degrees). In both sub-figures c and d, sliding windows have been used
to smooth the graphs correct pairs that have been differentiated from wrong ones by color.
It is clear from the plot that high degree pairs tend to gain marks much faster than low ones,
thus been matched earlier. At time 5000 percolation has stopped, therefore artificial seed has
been created and spread out marks. At this point many new pairs gained marks, so again,
high degree pairs were matched first and gradually all other pairs. We suggest that at the
beginning of the algorithm the degree of wrong pairs is lower than the degree of correct ones
since low degree nodes are harder to match. However, wrong pairs at the end of the algorithm
have much higher degree since it increases their probability to gain marks, especially after
the artificial seed spread out many wrong marks, allowing them to be matched despite being
incorrect.

• Sub-figure 18d represents the number of pairs’ marks, also by order of insertion to M . The
two picks around time 5000 and 9000 corresponding to the generation of an artificial seed,
adding a lot of marks to the candidate pairs.

recall

precision
=

Λ(M)

|G1 ∩G2|
Λ(M)

|M |

=
|M |

|G1 ∩G2|
(7)
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Figure 14: ExpandWhenStuck algorithm: Precision, recall and F1-score over graph 2 as a function
of seed size. Sub-figures a-e use increasing s values of 0.4, 0.5, 0.6, 0.7, 0.8, respectively. Even with
higher seed size, performances are significantly lower compered to Erdos-Renyi graphs. In addition,
there is a consistent large gap between recall and precision.
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Figure 15: ExpandWhenStuck algorithm: Precision, recall and F1-score over graph 4 as a function
of seed size. Sub-figures a-e use increasing s values of 0.4, 0.5, 0.6, 0.7, 0.8, respectively.
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Figure 16: ExpandWhenStuck algorithm: Precision, recall and F1-score over graph 1 as a function
of graphs overlap (s). Sub-figures a-e use increasing seed size of 25, 50, 100, 200, 400, respectively.
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Figure 17: ExpandWhenStuck algorithm: Precision, recall and F1-score over graph 3 as a function
of graphs overlap (s). Sub-figures a-e use increasing seed size of 50, 100, 200, 400, 800, respectively.
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ExpandWhenStuck over Graph6, s=0.7, |seed| = 480
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Figure 18: ExpandWhenStuck over Graph6 with graphs overlap (s) of 0.7 with |seed| = 480. Sub-
figures b indicates much lower performances, caused both by many low-degree nodes (see sub-figure
a) and the clustered nature of graphs with power-law degree distribution.

4.3 Parallel Version of ExpandWhenStuck

Although [9] reports that their parallel version can be run on graphs with millions of nodes without
fundamentally affecting the performance of the algorithm, they do not present any information
about the exact drop in performance. The parallel version splits each iteration into epochs, in
which it adds to M every possible candidate pair without spreading out marks, and then spreads
out marks simultaneously for the next epoch.

We reproduce the test from the previous section, alongside the results of the parallel version (Fig-
ures 20, Figures 19). The parallel version requires a larger seed in order to achieve similar results
to the original version. Together with the former findings, we can conclude that EWS has three
main difficulties:
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1. Significantly lower performances on real-world graphs.

2. Difficulty to handle graphs-overlap lower than 0.7.

3. A simpler paralleled version is needed in order to process large graphs.
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Figure 19: A comparison between EWS and its parallel version: F1-score of both versions over
graph 2 as a function of seed size. Sub-figures a-e use increasing s values of 0.4, 0.5, 0.6, 0.7, 0.8,
respectively. One can note a significant drop in performances of the parallel version compared to
EWS.
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Figure 20: A comparison between EWS and its parallel version: F1-score of both versions
over graph 1 as a function of graphs overlap (s). Sub-figures a-e use increasing seed size of
25, 50, 100, 200, 400, respectively. One can note a significant drop in performances of the paral-
lel version compared to EWS.

4.4 Simplified Version to Second-Run

As suggested in section 3.6, we aim to solve seeded GM by first run ExpandWhenStuck, and then
perform a second iteration based on all the information that has been collected. To better justify
our choice of ¯soret(p) = max(score2,t(p), score1,∞(p)) as the score function of the second iteration,
we start with a simplified version in which the score function is only score1,∞(p)). Practically, it
means that the second iteration is based on the amount of marks that each pair received during
the first iteration alone.

The intuition to keep adding recommendations to mapped pairs and use them on a second run
is simple. Since the percolation GM method is based on the assumption that correct pairs tend
to receive more marks, we can base on this assumption all along the algorithm, not only until the
moment of inserting the pair into M . In Figure 22 we emphasize the advantage of relying upon
score∞(p) at time t by comparing the number of marks that a pair p has when inserted into M ,
against the number of marks it has at t =∞.

4.4.1 Proof of improvement

We formally prove the advantage of ’second run’ over ExpandWhenStuck. For that purpose, we an-
alyze the algorithm over the input of random graphs generated by G(n, p, s). As argued by [9] when
analyzing EWS, the property of generating noisy seed whenever it gets stuck is hard to analyze. For
that reason, we analyze a simpler version of that algorithm where an artificial seed is not generated
when percolation stops (see Figure 21). We also use a simplified version to Second-Run. Instead of
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the function ¯scoret(p) defined by the maximum of two functions, in Theorem 1 we only prove the
advantage of score1,∞(p) over score1,t(p) for discovering matching pairs. Intuitively, if score1,∞(p)
proved to be better than score1,t(p), the marks received during the second iteration should be more
accurate, improving score2,t(p), therefore improving ¯scoret(p) = max(score1,∞(p), score2,t(p))

Simplified ExpandWhenStuck

1: A← seed is the initial set of seed pairs, M ← seed;
2: Z ← ∅ is the set of used pairs
3: MarkedPairs← ∅ is the set of all marked pairs along with their number of marks
4: for all pairs [u, v] ∈ A do
5: Add the pair [u,v] to Z and add one mark to all of its neighboring pairs;
6: end for
7: while there exists an unmatched pair with at least 2 marks in MarkedPairs that does not

conflict M do
8: Among those pairs select the one maximizing score(p);
9: Add p=[i,j] to the set M ;

10: if [i,j] /∈ Z then
11: Add one mark to all of its neighboring pairs and add the pair [u,v] to Z;
12: end if
13: end whilereturn M , MarkedPairs;

Figure 21: A simplified version of ExpandWhenStuck. Whenever no pair with two marks exists,
the algorithm does not generate an artificial seed and simply stops.

Theorem 1: Given G1, G2 ← G(n, p, s), let p′ = [u, v′] be a wrong pair inserted into M at time
t and let p = [u, v] be a right pair conflicting p′. Assuming at some time t̄ > t a correct pair has
been inserted into M , the following applies:

E[score∞(p) − score∞(p′)] > E[scoret(p) − scoret(p
′)] (8)

Since whenever we choose a wrong pair [u, v′] before the right pair [u, v], we will eventually avoid
the latter insertion of [u, v], since it will conflict M . Theorem 1 suggests that using score∞ will
reduce the probability of a mistake in the next iteration - eventually reducing the number of wrong
pairs in M .

Proof of Theorem 1:
Eq. 8 in Theorem 1 is equivalent to:

E[score∞(p) − scoret(p)] > E[score∞(p′) − scoret(p
′)] (9)

In other words, the expected number of marks that p will get from now on, will be higher than the
expected number of marks p′ will receive. Let us denote by Mt the map at time t, we define Λ(Mt)
to be the number of right pairs in Mt and Ψ(Mt) be the number of wrong pairs.
Let pt′ = [α, β] be a pair inserted to M at time t′ > t:
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• If pt′ is a correct pair, α and β represent the same vertex γ ∈ V (u and v represented by
the same vertex w ∈ V as well). p = [u, v] gets one mark if there are edges (α, u) ∈ E1 and
(β, v) ∈ E2. This requires the edge (γ,w) to exist in E (which happens with probability p)
and to be sampled in E1, E2 (happens with probability s2). On the other hand, p′ gets a mark
if (α, u) ∈ E1and(β, v′) ∈ G2. This requires two different edges to exist in E (probability of
p2) and to be sampled to E1 and E2 accordingly (probability of s2).

• If pt′ is a wrong pair, α and β are represented by the different vertices α′, β′ ∈ V , (note that
pt′ cannot conflict p′). The pair p gets one mark if there are edges (α, u) ∈ E1 and (β, v) ∈ E2.
This happens with probability p2s2. The pair p′ gets one mark if there are edges (α, u) ∈ E1

and (β, v′) ∈ E2, which also happens with probability p2s2. In fact, it is possible that one of
the pairs pt′ will have the form [k, v]. In that case, p′ gets a mark with probability p2s2 while
p gets none, as [u, v′] can never be a neighboring pair of [k, v′].

Let us denote Lt = M∞ −Mt, using the analysis above, one can compute:

E[score∞(p) − scoret(p)] ≥ Λ(Lt) ∗ s2p + (Ψ(Lt) − 1) ∗ s2p2 (10)

E[score∞(p′) − scoret(p
′)] = Λ(Lt) ∗ s2p2 + Ψ(Lt) ∗ s2p2. (11)

Combining Eq. 10 and 11, we obtain:

E[score∞(p)− scoret(p)] ≥ Λ(Lt) ∗ s2p(1− p)− s2p2

+ E[score∞(p′)− scoret(p′)] (12)

To prove Eq. 9, it remains to show that Λ(Lt) ∗ s2p(1− p)− s2p2 > 0. Since we assumed that some
correct pair has been inserted to M at time t̄ > t, we have Λ(Lt) ≥ 1. p is the probability of an
edge to exist, and as we only focus on sparse graphs we assume p << 0.5, leading to:

Λ(Lt) ∗ s2p(1− p)− s2p2

= (Λ(Lt)− 1) ∗ s2p(1− p) + s2p(1− p)− s2p2

= (Λ(Lt)− 1) ∗ s2p(1− p) + s2p(1− 2p) > 0 (13)

�
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ExpandWhenStuck over Graph 6, s=0.7, |seed| = 480
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Figure 22: On the left, we present the number of marks at the moment of insertion into M during
ExpandWhenStuck, Axis X represent time. On the right, are the the same pairs (keeping the same
order) but presenting the number of marks they had at the end of the algorithm. The tendency of
correct pairs to keep gaining marks after been matched is clear. (Both graphs having been smoothed
by sliding window of 50 for clarity.)

4.5 Second-Run’s Results

As a reminder, marks2,t(p) refers to the number of marks gained by pair p during iteration 2 until
time t. In the Second-Run algorithm we start a second iteration after running ExpandWhenStuck,
building a new map M2 base on the function ¯soret(p) = max(score2,t(p), score1,∞(p)). This way
we aim to earn from the advantage of both functions: score1,∞(p) is based on more matched pairs,
while score2,t(p) is based on potentially more accurate matches.

We applied both of the algorithms ten times on each graph with a fixed s = 0.6, the mean and
standard deviation are presented in Table 3 below. Then, we performed a one-side t-test to test
the null hypothesis that ExpandWhenStuck distribution’s median is higher than ours, the p-values
also appear in the table.

graph1 graph2 graph3 graph4 graph5 graph6
F1-score mean ExpandWhenStuck 51.82 48.96 46.38 61.32 61.02 38.19

Second-Run 56.33 50.43 47.45 64.6 61.77 40.62
F1-score std ExpandWhenStuck 1.44 0.34 0.51 0.5 0.62 1.92

Second-Run 0.97 0.3 0.39 0.57 0.5 1.86
p-value 4 ∗ 10−7 8 ∗ 10−9 6 ∗ 10−5 9 ∗ 10−11 6 ∗ 10−3 7 ∗ 10−3

Table 3: One-side t-test: We applied ExpandWhenStuck and Second-Run ten times on each graph
with a fixed s = 0.6. Then a one-side t-test was performed to test the null hypothesis that
ExpandWhenStuck distribution’s median is higher than ours.
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We performed a comparison between ExpandWhenStuck, Simplified-Second-Run (uses only
score1,∞(p)) and Second-Run (Figures 23 and 24). The comparison represents precision, recall
and F1-score of the algorithm, each figure use two graphs and a fixed graphs-overlap (s). One can
notice a consist improvement from ExpandWhenStuck to Second-Run in all indices. The second
observation is that while Second-Run has a better recall and F1-score than those of Simplified-
Second-Run, they have the same precision values. We suggest here that Simplified-Second-Run has
a limited effect on the recall since it does not enlarge the pool of candidate pairs. We thus proposed
to enlarge the candidate pairs by spreading out marks during the second iteration, as Second-Run
does using ¯scoret(p).
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Figure 23: A comparison of precision, recall and F1-score between ExpandWhenStuck (uses
score1,t), Simplified-Second-Run (uses score0,∞) and Second-Run (uses ¯scoret). The sub-plots
on the left are based on graph 1, and on the right are based on graph 2, both use graphs-overlap
(s) of 0.6. Besides the clear improvement over ExpandWhenStuck, Second-Run consistently has
higher recall than Simplified-Second-Run.
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Figure 24: A comparison of precision, recall and F1-score between ExpandWhenStuck (uses
score1,t), Simplified-Second-Run (uses score0,∞) and Second-Run (uses ¯scoret). The sub-plots
on the left are based on graph 3, and on the right are based on graph 4, both use graphs-overlap
(s) of 0.7. Besides the clear improvement over ExpandWhenStuck, Second-Run consistently has
higher recall than Simplified-Second-Run.
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4.6 Performance of IRMA

The extension from Second-Run to IRMA is very natural. While Second-Run starts a second itera-
tion to build M2 based on ¯score2,t(p) = max(score2,t(p), score1,∞(p), IRMA builds Mi during the
i-th iteration using ¯scorei,t(p) = max(scorei,t(p), scorei−1,∞(p). We already proved the advantage
of Second-Run over EWS, so score2,∞(p) is more accurate than score1,∞(p), allowing score3,t(p) to
be more accurate than score2,t(p) and therefore for ¯score3,t(p) to be more accurate than ¯score2,t(p).
This way we can use induction to argue that Mi is improving from iteration to iteration until con-
vergence.

In Figure 25, each sub-figure consists of several runs of IRMA with a different size of seeds, and
with a fixed graph and graphs-overlap (s). For example, in sub-figure a, where we used graph 1
and s = 0.6, any seed size is a different run of the algorithm. For any seed size, any line passing
above represents another iteration of the same run, gradually converging from EWS to IRMA (the
blue line). The first, most noticeable observation is that IRMA indeed gradually repairs the output
map of EWS. In fact, the F1-score results are a monotonic non-decreasing function in the number
of iterations. Second, the number of iterations is low enough to be negligible from the perspective
of run-time (multiplication by small constant). Finally, and most interesting, is that IRMA is less
sensitive to the randomness of the process. EWS often achieves lower performances on a bigger
seed due to the randomness in the process of generating the graphs and choosing the seed (see
sub-figures a,d,e for such cases). Despite accepting EWS’s output as an initial map, IRMA exhibits
a dependency on the problem properties (as the input graph and the graphs-overlap) rather than
the output of EWS, and therefore has much smoother plots.
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Figure 25: Performances of IRMA: Each sub-figure consists of several runs of IRMA with a different
size of seeds with a fixed graph and graphs-overlap (s). We show how the iterations gradually
converge from ExpandWhenStuck to IRMA (the blue line).

4.6.1 Stopping condition

In the previous section, we explained why IRMA’s iterations improve from Mi to Mi+1 and sup-
ported this claim with relevant figures. We now aim to justify our choice of weight(Mi) as a
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quality measure for Mi, and hence as a stopping condition for the algorithm. We recall that
weight(M) is defined as |{[u, v]|[u, v] ∈ G1, [M(u),M(v)] ∈ G2}|, that is, the number of edges
in the common subgraph induced by the M . Since correct pairs share more common neighbors
in expectation, we expect better maps to have higher weight(M). In the opposite direction, if
weight(Mi) < (1 + δ)weight(Mi+1), we can assume that Mi+1 is not significantly better than Mi.
We run IRMA and compare weight(Mi) to the F1-score of Mi to test the connection between them
(Figure 26). One can note that both indices are converging simultaneously, making weight(M) a
perfect halt condition.
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Figure 26: Each sub-figure represents weight(M) and F1-score of a single run of IRMA along the
iterations. One can note that both indices are converging simultaneously, making weight(M) a
perfect halt condition.

4.6.2 Computational Complexity of IRMA

For a pair [u, v] ∈M , the number of marks to spread out is d1(u) ∗ d2(v) where di(u) is the degree
of u ∈ Gi. Thus, the number of updates to the priority queue from inserting new pairs to M is
N =

∑
[u,v]∈M d1(u) ∗ d2(v). The cost of each insertion is proportional to the log of the size of the

priority-queue, which is bound O(|V |2), so the cost of each insertion is bound by O(Log(|V |), where
|V | is the number of vertices. The total number of updates (N) is between N = O(|V | ∗E[d]2) and
N = O(|V | ∗ E[d2]), where d is the degree. The first case is for random matching (i.e., d(u) and
d(v) are independent), and the second case is for perfect matching d(u) = d(v). In low variance
degree distributions, both cases are equivalent. However, in power-low degree distributions, the
second case may be much higher than the first. Thus, one can bound the cost of the algorithm by
O(|V | ∗ log(|V |) ∗ E[d2], but often the bound is tighter - O(|E|2 ∗ log(|V |)/|V |). The Repairing-
Iteration has a similar cost, since it is based on the same logic of pulling pairs from the priority
queue and spreading out marks. Note that we avoid the problematic case in EWS that the expanded
seed may be of O(|V |2), which adds a V factor to the cost of spreading marks. In their parallel
versions, the boundary is similar, but in practice the Repairing-Iteration takes about 30% − 60%
the run time of EWS, and as IRMA runs Repairing-Iteration a few times, it has an overall run time
2-3 times higher than EWS, but of the same order.

4.7 Expansion to Low Degree Vertices

As explained in the introduction, the Seeded Graph Matching problem is a variant of the Maxi-
mum Common Edges Subgraph (MCES) problem. However, while in MCES, one tries to find the
common subgraph that contains the maximal possible number of edges, in our problem the target
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is to use the edge match as a tool to discover an a priori existing match. Practically, in the MCES
it is always beneficial to add more vertices to the map - no matter how wrong their map will be.
However, in seeded GM, one tries to maximize both precision and recall. Hence, at some stage,
IRMA does not add pairs that with high probability are wrong, since those will lower the precision.

While running both ExpandWhenStuck and the repairing iterations, we use a threshold of two
marks to add a candidate pair into M . This threshold has been set as a trade-off to insert only
reliable pairs, yet allow percolation to flow. But since we can use the Repairing-Iteration method
to filter out wrong matched pairs, it is possible to allow the algorithm to mistake in some cases
in return to find new correct pairs. For that reason, we suggest to perform one repairing iteration
with a threshold of one mark, after IRMA has been converged. Then, we run regular repairing
iterations again to gradually restore the precision.

As explained above in sub-section 3.8.1, now that repairing iterations are used to filter out a
massive amount of wrong pairs, weight(Mi) is no longer a good stop condition. We thus examined
three possible break conditions to the second stage of IRMA:

1. Let |Mi| be be number of pairs in Mi, where Mi is the set of matched pairs at the end
of the i iteration. Similarly, let Weight(Mi) be the total number of edges among mem-
bers of Mi present in both G1 and G2. The quality of a bijection can be defined through
Weight(Mi)/|Mi|.

2. As the target is to scale M down, |M | might indicate if the second stage has ended. We can
use the condition |Mi| ≥ (1− δ) ∗ |Mi−1| to avoid many redundant iterations.

3. Empirically after a few iterations there is no significant improvement from Mi to Mi+1. A
simple solution might be to use a constant number of iterations.

We computed the difference in accuracy along snapshots vs these three different measures (Fig-
ure 27). Sub-plots a and b represent the difference in precision as a function of the difference in
|weight(Mi)|/|Mi| and |Mi|, respectively. A clear correlation between the measures can be seen
in sub-plots A and B, yet the variance around the origin (i.e., when IRMA converges) is relatively
large. Instead, sub-plot C indicates that the most reliable prediction to the convergence of precision
is the number of iteration. We thus propose that as the default stopping criteria after the expansion
iteration.
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Figure 27: Difference in precision as a function of three indicate. We run IRMA with the exploring
iteration multiple times over different graphs, seed-size and graphs-overlap. The scatters indicates
that four repairing iterations are enough for the precision to converge.

We used these additional iterations on the runs of IRMA from the previous section and received
a small but consistent improvement over IRMA, that is typically bigger on relatively small seeds
(except for cases when IRMA failed). We tested the precision, recall and F1-score along IRMA’s
iterations on different graphs (Figure 28). As follows from Eq. ??, the precision is always higher
than recall, and the relation between them is equal to the ratio between R and M . Both recall
and precision are monotonic non decreasing up to the expansion/exploration iteration. The drop
in precision together with the pick in recall are caused by the exploration iteration, inserting many
pairs with low level of certainty. After that, the Repairing-Iteration method is activated again
to restore precision, and successfully does so in a few iterations. Note that while precision is
fully restored (and some times even improves), the recall stays higher than before the exploration
iteration, as some of the correct new matches lead to an unexplored part of the graphs and gain
enough marks for later iterations.
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Figure 28: Precision, recall and F1-score during the algorithm’s iterations : Each sub-figure consists
of a single run of IRMA with the exploring iteration. The drop in precision is caused by the exploring
iteration, after which the precision is fully restored while recall stays higher than before.
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Figure 29: Exploring iteration: We run an exploring iteration (together with repairing iterations)
after each run of IRMA. Each sub-figure consists of several runs of the algorithm with a different
size of seeds and with a fixed graph and graphs-overlap (s). The exploring iteration consistently
improves the performances over IRMA.
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4.8 Parallel solution

In section 3.9 we introduced the parallel version to EWS using epochs. The main idea is to split
the algorithm into epochs such that marks are spread out only between the epochs, allowing to use
parallelism. We therefore also developed a parallel version to Repairing-Iteration in which M is
rebuilt based only on the marks of the former iteration. The parallel version of IRMA then starts
by running Parallel-EWS and then perform iterations of Parallel-Repairing-Iteration.

A comparison is made in Figure 30 between parallel-EWS, Parallel-IRMA and regular IRMA (both
use exploring iteration). Parallel-IRMA has much higher performances than Parallel-EWS. In sub-
figure e we have an extreme case where Parallel-IRMA with 25 seeds is higher than Parallel-EWS
with 400. In many cases Parallel-IRMA has a very close result to standard IRMA, making it an
excellent trade-off between run-time and performances. Presenting those results, we recall that
(parallel) IRMA has the same run time as (parallel) EWS up to multiplication by a small constant.
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Figure 30: A comparison between parallel-ExpandWhenStuck, Parallel-IRMA and regular IRMA
(both use an exploring iteration).
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ABSTRACT
The alignment of two similar graphs from different domains is a
well studied problem. In many practical usages, there are no reliable
labels over the vertices, leaving structural similarity as the only
information available to match such a graph. To simplify the match-
ing, one often assumes a small amount of already aligned vertices
- called a seed. The current state-of-the-art scalable seeded align-
ment algorithm is based on percolation. Namely, aligned vertices
are used to align their neighbors and gradually percolate in parallel
in both graphs. The ‘ExpandWhenStuck’ algorithm improves for-
mer percolation algorithms by generating an inaccurate artificial
seed whenever the percolation is stuck, leading to better results
using smaller seeds in Erdos Renyi graphs.

However, percolation based graph alignment algorithm are still
limited in scale free degree distributions. We here propose ‘IRMA’
- Iterative Repair for graph MAtching to show that the ‘Expand-
WhenStuck’ can be extended to high performance on real-world
graphs with a limited additional computational cost. IRMA starts
by creating a primary alignment using ’ExpandWhenStuck’, then
it iteratively repairs the mistakes in the previous alignment steps.
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1 INTRODUCTION
1.1 Graph Matching
In graph matching (GM), one is given two graphs𝐺1 and𝐺2 known
to model the same data (i.e., there is an equivalence between the
graphs vertices). For example,𝐺1 may be the friendship graph from
the Facebook social network and 𝐺2 the friendship graph from
the Twitter social network for the same people. In both cases, the
vertices are users and there is an edge between two vertices if the
corresponding users are friends in the relevant social network. We
assume that a friend in one network has a higher than random
probability of being a friend in the second network.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
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The goal of GM is to create a bijection 𝑀 : 𝑉1 → 𝑉2, such that
𝑀 maps vertices in 𝑉1 to a vertex in 𝑉2 if they represent the same
real-world entities. In the example above, 𝑀 should connect pro-
files in Facebook and Twitter that belong to the same person. We
note by 𝑅 the ground-truth, i.e., the set of all pairs of vertices that
represent the same entity in both of the graphs. Given a bijection
𝑀 , if 𝑀 (𝑣1) = 𝑣2, and 𝑀 (𝑣3) = 𝑣4, and the edge (𝑣1, 𝑣3) ∈ 𝐸1, and
(𝑣2, 𝑣4) ∈ 𝐸2, the common edge will be defined as a shared edge.
The quality measure for the quality of𝑀 is usually the number of
shared edges.

Finding a full bijection is not always optimal, since some vertices
may be absent from one of the two graphs. We thus look for a
partial bijection: 𝑀 : 𝑉1 ⊂ 𝑉1 → 𝑉2 ⊂ 𝑉2, such that the fraction
of shared edges is maximal. A single edge bijection is obviously a
simple solution to that. Thus, a trade-off between the number of
shared edges and the fraction of mapped vertices is often required,
by adding a constraint on the number of elements in 𝑉1.

1.2 Seeded Graph Matching
In the presence of limited initial information on the bijection, one
can use seeded GM. In seeded GM, the input contains beyond
(𝐺1,𝐺2) also a small 𝑠𝑒𝑒𝑑 ⊂ 𝑉1 ×𝑉2, which is a group of vertices
pairs known to represent the same real-world entities in 𝐺1 and in
𝐺2. A similar problem emerges when the vertices have additional
information named labels or meta-data [16, 19]. For example, the
users on Facebook and Twitter may have additional attributes, such
as age, address, and user names. It is obvious that a user named
“Bob Marley" in Facebook is much more likely to represent the same
person as a user with the same name on Twitter than a user named
“Will Smith". For that reason, labeled vertices are significantly sim-
plifying the matching problem, and pairs of vertices with highly
similar attributes can be used as a seed. Here, we focus on seeded
GM based, with no labels over the vertices. We propose an iterative
approach to seeded GM.

2 RELATEDWORK
2.1 Graph Matching Solvers
GM is used in different disciplines. In social networking, GM can be
used for the de-anonymization of data sets from different domains
[14, 27]. GM is used on proteins from different species in biology
to detect functional equivalences [13, 23], and to discover a resem-
blance between images in computer vision [5, 25, 26].

The main progress in GM algorithms is based on machine–learning
methods, and can be broadly divided into two main categories:
profile-based and network-based methods. Profile-based methods
rely on the vertices meta-data (e.g., username [28], spatio-temporal



patterns [21], posts [9], or writing style [18], etc.) to link accounts
across different sites. Network-based methods rely on the graph
topological structure [15, 24, 29]. In general, machine learning based
methods are characterized by a high run time, in both training and
deployment. Multiple theoretical bounds for a GM solution were
proposed [2, 3, 12, 22]. They make use of several parameters such
as seed size, degree distribution, graphs-overlap, etc. Polynomial
run-time complexity algorithms were developed that in exchange
for scalability may achieve a good alignment only under certain
assumptions [4, 7, 8, 17].

An important aspect of GM is scaling, since its practical use
is often in large graphs. Current state-of-the-art scalable seeded
GM methods are based on gradual percolation, starting from the
seed and expanding through common neighbors. This class of algo-
rithms is referred to as Percolation GraphMatching (PGM) methods
[10, 14, 27]. Despite having in some cases additional information
in the form of labels, [10] showed the crucial importance of relying
on edges during the process of GM. Both [1] and [11] present an
improvement to [27] and are currently state-of-the-art PGM algo-
rithms. Here we focus on [11] and improve it by presenting our
Iterative Repair for graph MAtching (IRMA) algorithm.

For convenience, we follow here the notations of ExpandWhen-
Stuck (further denoted EWS) [11] with minor changes (see Table 1
a list of notations).

In the following text, we refer to the input graphs as𝐺1 = (𝑉1, 𝐸1)
and 𝐺2 = (𝑉2, 𝐸2). When we mention a pair [𝑢, 𝑣] or 𝑝 , we refer
to a pair of vertices [𝑢, 𝑣] ∈ 𝑉1 ×𝑉2, with no explicit mention. We
denote the pairs [𝑢, 𝑣], [𝑢 ′, 𝑣 ′] as neighboring pairs if (𝑢,𝑢 ′) ∈ 𝐸1
and (𝑣, 𝑣 ′) ∈ 𝐸2. Finally, a pair [𝑢, 𝑣] conflicts 𝑀 if it conflicts an
existing pair in [𝑢 ′, 𝑣 ′] ∈ 𝑀 (i.e., 𝑢 = 𝑢 ′ and 𝑣 ≠ 𝑣 ′ or vice versa).

In PGM algorithms, one maintains a score for each candidate pair,
and uses the score to gradually build the set of the matched pairs
- 𝑀 . Adding a constant value to the score (also called the mark)
of all neighboring pairs of some given pair is called ‘spreading
out marks’. 𝑚𝑎𝑟𝑘𝑠𝑡 (𝑝) of the pair 𝑝 is defined as the number of
marks 𝑝 received from other pairs until time 𝑡 . As there is a high
chance for two pairs to have the same amount of marks, we define
𝑠𝑐𝑜𝑟𝑒𝑡 ( [𝑢, 𝑣]) to give a priority to pairs with similar degree:

𝑠𝑐𝑜𝑟𝑒𝑡 ( [𝑢, 𝑣]) =𝑚𝑎𝑟𝑘𝑠𝑡 ( [𝑢, 𝑣]) − 𝜖 ∗ |𝑑1,𝑢 − 𝑑2,𝑣 |, (1)

for an infinitesimal 𝜖 > 0, where 𝑑𝑞,𝑣 is the degree of a vertex 𝑣
in graph 𝑞. The second term is to solve matches using the degree.
In a nutshell, EWS (see code in Figure 1) starts by adding all the
seed pairs into𝑀 , and spreading out marks to all of their neighbors.
Then, at each time step 𝑡 , EWS chooses a candidate pair 𝑝 ′ =
𝑎𝑟𝑔𝑚𝑎𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝)) that does not conflict 𝑀 , adds it to 𝑀 and
spreads out marks to all of its neighbors (see Figure 2). When there
are no pairs left with more than one mark (line 15 in Figure 1), EWS
creates an artificial noisy seed (𝐴), and uses it to further spread out
marks (line 6 in Figure 1). 𝐴 contains all pairs that are: 1) neighbors
of matched pairs 2) do not conflict 𝑀 3) never have been used
to spread out marks. The novelty of EWS is the generation of an
artificial seed whenever there are no more pairs with more than
one mark. The artificial seed is mostly wrong. Yet, EWS manages
to use it to match new correct pairs and continue the percolation.

Pair A pair [𝑢, 𝑣], is [𝑢, 𝑣] ∈ 𝑉1 ×𝑉2. Sometimes we refer
to a pair 𝑝 without specifying that it is in 𝑉1 ×𝑉2.

Neighboring
pair

Given the graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2),
the pairs [𝑢, 𝑣], [𝑢 ′, 𝑣 ′] ∈ 𝑉1 × 𝑉2 are neighboring
pairs, if there are edges (𝑢,𝑢 ′) ∈ 𝐸1 and (𝑣, 𝑣 ′) ∈ 𝐸2.

Spreading
out marks

In the description of the matching algorithms, we
refer to a pair 𝑝 spreading out marks as adding one
mark to each neighboring pair of 𝑝 .

𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 Contains marks-counters for all marked pairs.
𝑀𝑎𝑟𝑘𝑠𝑡 (𝑝) Number of marks pair 𝑝 received from other pairs

until time 𝑡 . 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝) is defined accordingly (Eq. 1).
𝑀𝑎𝑟𝑘𝑠𝑖,𝑡 (𝑝) Number of marks pair 𝑝 received from other pairs

during the 𝑖-th iteration until time 𝑡 . 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝) is
defined accordingly (Eq. 5).

¯𝑀𝑎𝑟𝑘𝑠𝑖,𝑡 (𝑝) ¯𝑀𝑎𝑟𝑘𝑠𝑖,𝑡 (𝑝) = 𝑚𝑎𝑥 (𝑚𝑎𝑟𝑘𝑠𝑖,𝑡 (𝑝),𝑚𝑎𝑟𝑘𝑠𝑖−1,∞ (𝑝)).
¯𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝) is defined accordingly (Eq. 7).

𝑅 The ground-truth, i.e., the set of all pairs of vertices
that represent the same entity in both of the graphs.

𝑆𝑒𝑒𝑑 𝑆𝑒𝑒𝑑 ⊂ 𝑅 is a small group of pairs given as input
and known to contain only correct matches.

𝐴 A set of pairs to spread out marks from. Used in
EWS, initialized to 𝑠𝑒𝑒𝑑 .

𝑍 A set of pairs that already spread out marks. Used
in EWS to prevent repetitions.

𝑀 Set of all pairs matched by the algorithm. We refer
to any pair in𝑀 as a ‘matched pair’ and any other
pair as a candidate.

Pairs con-
flict

We say that pairs [𝑢 ′, 𝑣 ′], [𝑢, 𝑣] ∈ 𝑉1 ×𝑉2 conflict if
𝑢 = 𝑢 ′ and 𝑣 ≠ 𝑣 ′ or vice versa. If a candidate pair 𝑝
conflicts a matched pair 𝑝 ′, we say that 𝑝 conflicts
𝑀 .

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑀) |{(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸1, (𝑀 (𝑢), 𝑀 (𝑣)) ∈ 𝐸2}|
𝑠 𝑠 ∈ [0, 1] - the probability that an edge should be

sampled in 𝑉1 or in 𝑉2

Table 1: Main notations

At the end of EWS, the set of mapped pairs 𝑀 is returned along
with𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 that contains counters of marks for all marked
pairs. The last is not needed in EWS, but is used in IRMA. The
main contribution of EWS is a dramatic reduction in the size of
the required seed set for random 𝐺 (𝑛, 𝑝) networks (graph with 𝑛
vertices and a probability of 𝑝 for each edge).

3 METHODS
3.1 Evaluation Methods and Stopping Criteria
We use precision and recall to evaluate the performance of algo-
rithms: (i) Precision refers to the fraction of errors in the set of
matched vertices (i.e., pairs in𝑀 that are in 𝑅), and (ii) Recall is the
size of the intersect of𝑀 and 𝑅 out of the size of 𝑅 as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Λ(𝑀)
|𝑀 | , 𝑅𝑒𝑐𝑎𝑙𝑙 =

Λ(𝑀)
|𝑅 | , (2)



ExpandWhenStuck
1: 𝐴← 𝑠𝑒𝑒𝑑 is the initial set of seed pairs,𝑀 ← 𝑠𝑒𝑒𝑑 ;
2: 𝑍 ← ∅ is the set of used pairs
3: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 ← ∅ is the set of all marked pairs along with

their number of marks
4: while (|𝐴| > 0) do
5: for all pairs [𝑢, 𝑣] ∈ 𝐴 do
6: Add the pair [u,v] to 𝑍 and add one mark to all of its

neighbouring pairs;
7: end for
8: while there exists an unmatched pair with at least 2 marks

in𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 that does not conflict𝑀 do
9: among those pairs select the one maximizing 𝑠𝑐𝑜𝑟𝑒 (𝑝);
10: Add p=[u,v] to the set𝑀 ;
11: if [u,v] ∉ 𝑍 then
12: Add one mark to all of its neighbouring pairs and

add the pair [u,v] to 𝑍 ;
13: end if
14: end while
15: 𝐴 ← all neighboring pairs [u,v] of matched pairs M s.t.

[u,v]∉ 𝑍 , 𝑢 ∉ 𝑉1 (𝑀) and 𝑣 ∉ 𝑉2 (𝑀);
16: end while
17: return𝑀 ,𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠;

Figure 1: ExpandWhenStuck main algorithm

where Λ(𝑀) is the number of correct pairs in𝑀 and 𝑅 is the set of
all pairs of vertices that represent the same entity in both of the
graphs.

To compare the performance of GM algorithms, we also report
the F1–score, defined as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 . (3)

The scores above (Recall, Precision, and F1) can only be computed
based on known ground truth, yet it is useful to approximate the
quality of a solution during the run time, assuming no known
ground truth. Namely, given an input to the seeded-GM problem
and two possible maps 𝑀,𝑀 ′ : 𝑉1 → 𝑉2, we want to determine
which of the two is better. We use 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) as a score for the
quality of a mapping𝑀 :

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑀) = |{(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸1, (𝑀 (𝑢), 𝑀 (𝑣)) ∈ 𝐸2}|. (4)

3.2 The Generation of Correlated Graphs
To examine the performance of seeded GM algorithms, one needs
a pair of graphs, where at least a part of the vertices correspond
to the same entities. EWS used a simple probabilistic sampling
method over a single given graph to create two correlated graphs
with different levels of similarity.

We follow the same method. Specifically, given 𝐺 = (𝑉 , 𝐸) and
𝑠 , we generate 𝐺1 = (𝑉1, 𝐸1), and 𝐺2 = (𝑉2, 𝐸2) by twice randomly
and independently removing edges 𝑒 ∈ 𝐸 with a probability of 1− 𝑠 .
We then remove vertices with no edges in 𝐺1 and in 𝐺2 separately.
The edge overlap between 𝐺1 and𝐺2 increases with 𝑠 . EWS used

𝑠 ∈ [0.7, 0.9]. Using IRMA, we extend the range to 𝑠 ∈ [0.4, 0.9].
We name 𝑠 the ‘graphs-overlap’.

3.3 Data Sets
For fully simulated graphs, we use the above sampling method over
𝐺 (𝑛, 𝑝) Erdos-Renyi graphs [6], defined as a graph with 𝑛 vertices,
where every edge of the possible

(𝑛
2
)
exists with a probability of

𝑝 . It is common to mark two graphs created by sampling from an
Erdos-Renyi graph as 𝐺1,𝐺2 = 𝐺 (𝑛, 𝑝, 𝑠) [20].

To test our algorithm on graphs that better represent real-world
data, yet to control their level of similarity, we used sampling over
the following real-world graphs (further denoted as graph 1, graph
2, and so on, according to their order here (Table 2)).

Number Name Nodes Edges Average
degree

1 Fb-pages-media 27,900 206,000 14
2 Soc-brightkite 56,700 212,900 7.8
3 Soc-epinions 26,600 100,100 7.9
4 Soc-gemsec-HU 47,500 222,900 9.4
5 Soc-sign-Slashdot081106 77,300 516,600 12.1
6 Deezer_europe_edges 28,300 92,800 6.6

Table 2: Real-world data set graphs.

(1) Fb-pages-media - Data collected about Facebook pages (No-
vember 2017). These datasets represent verified Facebook
page graphs of different categories. Vertices represent the
pages and edges are mutual likes among them
(http://networkrepository.com/fb-pages-media.php).

(2) Soc-brightkite - Brightkite is a location-based social net-
working service provider where users shared their locations
by checking-in. The dataset contains all links among users
(http://networkrepository.com/soc-brightkite.php).

(3) Soc-epinions - Controversial Users Demand Local Trust Met-
rics: An Experimental Study on epinions.com Community
(http://networkrepository.com/soc-epinions.php).

(4) Soc-gemsec-HU - The data was collected from the music
streaming service Deezer (November 2017). These datasets
represent friendship graphs of users from 3 European coun-
tries. Vertices represent the users and edges are the mutual
friendships. We re-indexed the vertices in order to achieve a
certain level of anonymity. The edge files contain the edges -
vertices are indexed from 0. The json files contain the genre
preferences of users - each key is a user id, the genres loved
are given as lists. Genre notations are consistent across
users. In each dataset users could like 84 distinct genres.
Liked genre lists were compiled based on the liked song lists.
The countries included are Romania, Croatia and Hungary
(http://networkrepository.com/soc-gemsec-HU.php).

(5) Soc-sign-Slashdot081106 - Slashdot Zoo signed social net-
work from November 6 2008. It is noteworthy that this graph
was also used in [11] (http://networkrepository.com/soc-
sign-Slashdot081106.php).
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Figure 2: ExpandWhendStuck example. Given the seed {[𝑎1, 𝑏1], [𝑎2, 𝑏2]} on the left, [𝑎1, 𝑏1] spread out marks to the Cartesian
product {𝑎5} ∗ {𝑏2, 𝑏3, 𝑏5} (green column) and [𝑎2, 𝑏2] spread out marks to {𝑎4, 𝑎5} ∗ {𝑏1, 𝑏4, 𝑏5} (blue column). Marked pairs
conflicting the seed have been crossed out. [𝑎5, 𝑏5] is marked in bold for having the most marks. On the right, [𝑎5, 𝑏5] is
marked in yellow for getting into 𝑀 and marks have been spread out to {𝑎1, 𝑎2, 𝑎4} ∗ {𝑏1, 𝑏2, 𝑏4} (yellow column). We marked
[𝑎4, 𝑏4] in bold for being the next pair to be inserted into𝑀 .

(6) Deezer_europe_edges - A social network of Deezer users
which was collected from the public API in March 2020. Ver-
tices are Deezer users from European countries and edges
are mutual follower relationships between them. The ver-
tex features are extracted based on the artists liked by the
users. The task related to the graph is binary node classi-
fication - one has to predict the gender of users. This tar-
get feature was derived from the name field for each user
(http://snap.stanford.edu/data/feather-deezer-social.html).

3.4 Iterative Approach
The EWS algorithm has a greedy property. At step 𝑡 , it adds to
𝑀 the pair maximizing 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝). Assume that at time 𝑡 the algo-
rithm chooses some wrong pair [𝑢 ′, 𝑣] that obeys 𝑠𝑐𝑜𝑟𝑒𝑡 ( [𝑢 ′, 𝑣]) >
𝑠𝑐𝑜𝑟𝑒𝑡 ( [𝑢, 𝑣]) for the correct pair [𝑢, 𝑣]. Let us further assume that
[𝑢, 𝑣] will receive many marks from neighbors later in the algo-
rithm, such that 𝑠𝑐𝑜𝑟𝑒∞ ( [𝑢 ′, 𝑣]) < 𝑠𝑐𝑜𝑟𝑒∞ ( [𝑢, 𝑣]) . Such a scenario
is highly likely, since we argue that correct pairs tend to reach
a high score. Yet, [𝑢, 𝑣] will never get into 𝑀 as it conflicts with
another pair in it ([𝑢 ′, 𝑣]).

We use the accumulation of scores (𝑠𝑐𝑜𝑟𝑒∞ ( [𝑢 ′, 𝑣]) < 𝑠𝑐𝑜𝑟𝑒∞ ( [𝑢, 𝑣]))
to improve the matching. We suggest an iterative improvement of

the match, using the final score of the previous iteration.𝑚𝑎𝑟𝑘𝑖,𝑡 (𝑝)
is defined as the number of marks gained by pair 𝑝 during the 𝑖-th
iteration until time 𝑡 ; 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝) is defined accordingly as

𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 ( [𝑢, 𝑣]) =𝑚𝑎𝑟𝑘𝑠𝑖,𝑡 ( [𝑢, 𝑣]) − 𝜖 ∗ |𝑑1,𝑢 − 𝑑2,𝑣 |. (5)

Based on these scores, one can establish:

¯𝑚𝑎𝑟𝑘𝑖,𝑡 (𝑝) =𝑚𝑎𝑥 (𝑚𝑎𝑟𝑘𝑖,𝑡 (𝑝),𝑚𝑎𝑟𝑘𝑖−1,∞ (𝑝)), (6)

and, following Eq. 1

¯𝑠𝑐𝑜𝑟𝑒𝑡 ( [𝑢, 𝑣]) = ¯𝑚𝑎𝑟𝑘𝑖,𝑡 ( [𝑢, 𝑣]) − 𝜖 ∗ |𝑑1,𝑢 − 𝑑2,𝑣 |. (7)

We present the pseudo code for the Repairing-Iteration and IRMA
in Figures 3 and 4, respectively. IRMA starts with the initialization
of𝑀 to be the seed set, then it performs a standard EWS iteration.
In the following iterations, at time 𝑡 , while there is a candidate
pair with ¯𝑚𝑎𝑟𝑘𝑡 (𝑝) > 1, IRMA adds to 𝑀 the pair 𝑝 maximizing

¯𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝) among those that do not conflict 𝑀 , and spread marks
out of it.

IRMA stops the iterations when the mapping quality stops increas-
ing. Formally, the 𝑖-th iteration starts by initializing𝑀 = 𝑠𝑒𝑒𝑑 , then,



at time 𝑡 , it adds to𝑀 the candidate pair obeying:

𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 { ¯𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝)}, (8)

and spread marks out of it - updating𝑚𝑎𝑟𝑘𝑖,𝑡 . The iteration ends
when no candidate pair 𝑝 , that does not conflicts𝑀 , satisfies

¯𝑚𝑎𝑟𝑘𝑖,𝑡 (𝑝) > 1. (9)

Since we do not know the real mapping, we use𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) to
estimate the quality of the score at the current iteration (section 3.1).
We compute 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) ∀𝑖 where 𝑀𝑖 is the matching at the end
of the 𝑖-th iteration. Whenever 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) ≤ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖−1), the
algorithm stops and returns𝑀𝑖−1. In practice, to avoid many redun-
dant iterations with a limited increase in𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀), the algorithm
stops when 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) ≤ (1 + 𝛿) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖−1), where 𝛿 was
empirically set to 0.01. Note that this does not ensure convergence
of the mapping, only of its score.

Repairing Iteration
1: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖 is an input of all marks from the previous itera-

tion
2: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖+1 ← ∅,𝑀 ← 𝐴0;
3: Spread out marks from all pairs in𝑀
4: while there exists an unmatched pair with at least 2 marks in

𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖 or𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖+1 that does not conflict𝑀 do
5: Among those pairs select the pair 𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 { ¯𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝)};
6: Add 𝑝 to the set𝑀 ;
7: Add one mark in𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖+1 to all of its neighboring

pairs and add the 𝑝 to 𝑍
8: end while
9: return𝑀,𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖+1

Figure 3: Repairing Iteration receive themarks from the pre-
vious iteration alongwith the seed as input and builds amap
taking into consideration the marks gained at the previous
and current iteration.

IRMA (Iterative Repair for graph MAtching)
1: 𝑀,𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 ← 𝐸𝑥𝑝𝑎𝑛𝑑𝑊ℎ𝑒𝑛𝑆𝑡𝑢𝑐𝑘 (𝐴0)
2: 𝑀0 = ∅
3: while 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) > (1 + 𝛿) ∗𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀0) do
4: 𝑀0 = 𝑀
5: 𝑀,𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 ← 𝑅𝑒𝑝𝑎𝑖𝑟𝑖𝑛𝑔𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠)
6: end while
7: return𝑀

Figure 4: IRMA builds a primarily map using ExpandWhen-
Stuck and repeatedly improves it by running ‘Repairing It-
eration’. It uses 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) as an indication for convergence
by the stop condition that appears in line 3.

3.5 Expansion Boost
In the first part of IRMA, each iteration is built of the main while-
loop with a break condition of having no candidate pair, with at
least two marks, that does not conflict𝑀 . The threshold of marks
has been determined to 2 as a trade-off between the precision and
the recall. If one sets the threshold to a high value, 𝑀 will only
contain pairs with high confidence, yet the percolation will stop
early - leading to high precision but low recall. Similarly, setting
the threshold to one will increase recall at the expense of precision.

Following the IRMA iterations, we suggest performing a “noisy
iteration" with a threshold of 1 of choosing the next candidate pair
after IRMA has converged. This leads to a drop in precision, but
an increase in the recall. Then, we run regular repairing iterations
again to gradually restore the precision. The idea is that while
wrong pairs could not comply with the next iterations’ threshold
of 2 marks, correct pairs might lead to unexplored areas of the
graphs. Such pairs gain marks by their newly revealed neighbors,
a-posteriori justifying their insertion to𝑀 .

3.5.1 Break Condition. Since the iterations performed after the
‘noisy iteration’ are meant to filter out pairs with lower certainty,
we can no longer expect |𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) | to increase between iterations.
In practice, the second stage of IRMA (after the expansion boost),
restores the precision within a few iterations and rapidly stops
improving 𝑀𝑖 . We thus empirically set the IRMA to always stop
after four repairing iterations, after the expansion boost.

3.6 Parallel Version
In order to develop a GPU version of IRMA, we propose a parallel
version. The bottleneck of EWS is in spreading out marks from
[𝑢, 𝑣], which costs 𝑑𝑒𝑔1 (𝑢) ∗𝑑𝑒𝑔2 (𝑣) updates to the queue of marks.
Ideally, we would like to perform multiple mark spreading steps in
parallel. However, this is not immediately possible since the pair
chosen at time 𝑡 depends on the marks that have been spread out
earlier, including those of time 𝑡 − 1. Section 6.3 in [11] presents a
paralleled version where the main loop has been split into epochs.
This version of EWS starts by spreading out marks from the seed,
then at each epoch the algorithm greedily takes all possible pairs
from the queue one by one - without spreading any mark. When
the queue is eventually empty, it simultaneously spread marks from
all pairs selected at the current epoch, creating the queue to the
next epoch. This method has the advantage of being extremely fast,
allowing input graphs with millions of vertices, and has been ar-
gued not to fundamentally affect the performance of the algorithm.

We used a similar logic to parallelize iterations as follows (see
Figure 5 for pseudo code). The 𝑖-th iteration gets 𝑞𝑢𝑒𝑢𝑒𝑖−1 as input
and starts by greedily adding all possible pairs from the queue into
𝑀𝑖 one by one - without spreading any mark. Then, when the queue
is eventually empty, we simultaneously spread out marks from all
pairs in𝑀𝑖 creating 𝑞𝑢𝑒𝑢𝑒𝑖 . Iteration 𝑖 returns𝑀𝑖 and 𝑞𝑢𝑒𝑢𝑒𝑖 .



Parallel Repairing Iteration
1: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖−1 is an input of all marks from the previous

iteration.
2: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖 ← ∅,𝑀𝑖 ← 𝐴0;
3: while there exists an unmatched pair with at least 2 marks in

𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖−1 that does not conflict𝑀𝑖 do
4: Among those pairs select the pair 𝑝 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑝 {𝑠𝑐𝑜𝑟𝑒𝑖−1,∞ (𝑝)};
5: Add 𝑝 to the set𝑀𝑖 ;
6: end while
7: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖 ← marks that has been spread out from all𝑀𝑖

in parallel
8: return𝑀𝑖 , 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑖

Figure 5: In order to allow spreading out marks in parallel,
we no longer base over the marks of current iterations. It
enables us to perform this stage simultaneously at the end
of the iteration (line 7).

3.7 Experiments Setup
In section 3.3, we presented the variety of the data we used through-
out this paper. In addition to multiple different graphs and graphs-
overlap (𝑠) values, we run all of our tests with different seed sizes
that increment exponentially.
In general, experiments with a random factor have to be performed
several times to indicate a trend. In our case, the sampling of the
input graphs is based on randomness, as well as on choosing the
seeds. For example, high degree pairs in the seed are much more
effective to boost the process of percolation. However, the IRMA
algorithm includes EWS as a first step, enabling it to examine the
ability of IRMA to improve the output of EWS with a significantly
lower factor of randomness. Thus, whenever comparing the results
of IRMA to EWS, we are using the results of EWS as they obtained
in the first stage of IRMA. For extra caution, in our main experi-
ments (Figure 10) we repeat each experiment five times and present
the average results.

4 RESULTS
4.1 EWS on Real-World Graphs
IRMA is an improvement of EWS [11]. We first tested the accuracy
of EWS on a set of real-world graphs (see section 3.3 for detailed
information on the selected graphs). We use each of those graphs
to create two partially overlapping graphs by twice removing edges
from the same graph. The fraction of edges from the original graph
(𝐺) maintained in each of the partially overlapping graphs 𝐺1,𝐺2
is denoted 𝑠 . We use a value of 𝑠 in the range of [0.4, 0.8].

We computed the precision, recall and F1-score of EWS over all the
graphs with graphs overlap (𝑠) value of 0.5, 0.6, 0.7 as a function
of seed size (Figure 6 a-c, respectively for graph 2, Other graphs
are similar). All accuracy measures are highly sensitive to 𝑠 . The
reason is that a correct pair [𝑢, 𝑣] ∈ 𝐺1 × 𝐺2, corresponding to
vertex𝑤 ∈ 𝐺 with degree 𝑑 , has an expected number of 𝑠2𝑑 com-
mon neighbors, which also is approximately the number of marks

it will get. In random 𝐺 (𝑛, 𝑝) graphs, most vertices have similar
degree (a normal distribution of degrees), and if 𝑠2 ∗ 𝐸 (𝑑) > 2, EWS
typically works. More precisely, [11] present a simplified version to
the EWS that is much easier to analyze and compute the threshold
seed size in order for the algorithm to correctly match 𝐺 (𝑛, 𝑝, 𝑠)
graphs. Under several assumptions they found an upper bound of
𝑂 ( 1

𝑛𝑝4𝑠4 ).
However, in scale free degree distributions, the vast majority of

vertices obey 𝑑 < 𝐸 (𝑑). As such, low graphs-overlap values prevent
most vertices from gaining enough marks. The precision (and also
recall and F1) is typically a monotonic non-decreasing function of
the seed size, with no clear threshold (Fig. 6). A consistent large
difference between recall and precision can be observed. Eq. ??
shows that the ratio between the precision and the recall as defined

here are equal to the ratio between |𝑀 | and |𝐺1 ∩𝐺2 |- 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

|𝑀 |
|𝑅 | (defined to be the vertices contained in both graphs), i.e., the
algorithm struggle to percolate through the entire graphs. Since
real-world graphs have a power-law degree distribution, there are
many vertices with a low degree that will never collect enough
marks. As a result,𝑀 often contains only part of the possible pairs
to match.

4.2 Parallel Version of EWS
Although [11] reports that their parallel version can be run on
graphswithmillions of vertices without fundamentally affecting the
performance of the algorithm, they do not present any information
about the exact drop in performance. The parallel version splits
each iteration into epochs, in which it adds to 𝑀 every possible
candidate pair without spreading out marks, and then spreads out
marks simultaneously for the next epoch.
We reproduced the test from the previous section, alongside the
results of the parallel version (Figure 7 for graph 2. Other graphs
are similar). The parallel version requires a larger seed in order to
achieve similar results to the original version. Together with the
former findings, we can conclude that while EWS has an excellent
accuracy in 𝐺 (𝑛, 𝑝), it has two main limitations:

(1) Significantly lower performances on real-world graphs than
in 𝐺 (𝑁, 𝑝), and difficulty to handle graphs-overlap lower
than 0.7 in real-world networks.

(2) A large difference in real-world networks between the par-
allel and sequential versions.

We here propose that an iterative version of EWS can reduce these
limitations.

4.3 IRMA Algorithm
As suggested in section 3.4, IRMA is based on the iterative Graph
Matching problem, we first run EWS, and then perform repairing
iterations. In each iteration, IRMA uses the marks received at the
end of the former iteration to build a new and better map (Fig-
ures 3 and 4). The intuition to keep adding recommendations to
mapped pairs and use them on the next iteration is simple. Cor-
rect pairs share more common neighbors than the wrong ones in
the average case, therefore correct pairs are more likely to gain
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Figure 6: ExpandWhenStuck algorithm: Precision, recall and F1-score over graph 2 as a function of seed size. Sub-figures a-c
use increasing 𝑠 values of 0.5, 0.6, 0.7, respectively. Evenwith large seed size, performances are significantly worse than the ones
originally reported in 𝐺 (𝑛, 𝑝) Erdos-Renyi graphs. In addition, there is a consistent large gap between recall and precision.
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Figure 7: A comparison between EWS and its parallel version: F1-score of both versions over graph 2 as a function of seed size.
Sub-figures a-c use increasing graphs overlap (s) of 0.5, 0.6, 0.7, respectively. One can note a significant drop in performances of
the parallel version compared to EWS.

more recommendations, even if they initially contradict another
assignment.

4.4 IRMA improves accuracy along iterations
As a reminder, 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝) is a score function defined by𝑚𝑎𝑟𝑘𝑠𝑡 (𝑝)
(the number of marks 𝑝 gained until time 𝑡 ) and uses the difference
in the vertices degree to break ties (Eq. 1). In Figure 9, we emphasize
the advantage of relying upon 𝑠𝑐𝑜𝑟𝑒∞ (𝑝) at time 𝑡 by comparing
the number of marks that a pair 𝑝 has when inserted into𝑀 , against
the number of marks it has at 𝑡 = ∞.

4.4.1 Proof of improvement. We demonstrate the advantage of
IRMA over EWS by showing that performing even one parallel iter-
ation of ‘Iterative Repair’ lowers the probability of mapping wrong
pairs when running over 𝐺 (𝑛, 𝑝, 𝑠) graphs. 𝑆𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝) is based on
𝑚𝑎𝑟𝑘𝑠𝑖,𝑡 (𝑝) (the number of marks 𝑝 gained during the 𝑖-th itera-
tion until time 𝑡 ) see Eq. 5. Intuitively, if 𝑠𝑐𝑜𝑟𝑒1,∞ (𝑝) is better than
𝑠𝑐𝑜𝑟𝑒1,𝑡 (𝑝), the marks received during the second iteration should
be more accurate than in the first iteration, improving 𝑠𝑐𝑜𝑟𝑒2,𝑡 (𝑝),
therefore improving ¯𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝) =𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒1,∞ (𝑝), 𝑠𝑐𝑜𝑟𝑒2,𝑡 (𝑝)). As
argued by [11] when analyzing their algorithm, EWS has a complex
property of generating noisy seed whenever it gets stuck, which
is hard to analyze. For that reason, we analyze a simpler version

of that algorithm where an artificial seed is not generated when
percolation stops (see Figure 8).



Simplified ExpandWhenStuck
1: 𝐴← 𝑠𝑒𝑒𝑑 is the initial set of seed pairs,𝑀 ← 𝑠𝑒𝑒𝑑 ;
2: 𝑍 ← ∅ is the set of used pairs
3: 𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 ← ∅ is the set of all marked pairs along with

their number of marks
4: for all pairs [𝑢, 𝑣] ∈ 𝐴 do
5: Add the pair [u,v] to 𝑍 and add one mark to all of its neigh-

boring pairs;
6: end for
7: while there exists an unmatched pair with at least 2 marks in

𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 that does not conflict𝑀 do
8: Among those pairs select the one maximizing 𝑠𝑐𝑜𝑟𝑒 (𝑝);
9: Add 𝑝 = [𝑢, 𝑣] to the set𝑀 ;
10: if [u,v] ∉ 𝑍 then
11: Add one mark to all of its neighboring pairs and add

the pair [𝑢, 𝑣]𝑡𝑜Z; end if
12:13: return𝑀 ,𝑀𝑎𝑟𝑘𝑒𝑑𝑃𝑎𝑖𝑟𝑠 ;

Figure 8: A simplified version of ExpandWhenStuck. When-
ever no pair with two marks exist, the algorithm does not
generate an artificial seed and simply stops.

Theorem 1: Given 𝐺1,𝐺2 ← 𝐺 (𝑛, 𝑝, 𝑠), let 𝑝 ′ = [𝑢, 𝑣 ′] be a
wrong pair inserted into 𝑀 at time 𝑡 and let 𝑝 = [𝑢, 𝑣] be a right
pair conflicting 𝑝 ′. Assuming at some time 𝑡 > 𝑡 a correct pair has
been inserted into𝑀 , the following applies:

E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝) − 𝑠𝑐𝑜𝑟𝑒∞ (𝑝 ′)] > E[𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝 ′)] (10)
Since whenever we choose a wrong pair [𝑢, 𝑣 ′] before the right
pair [𝑢, 𝑣], we will eventually avoid the latter insertion of [𝑢, 𝑣],
since it will conflict𝑀 . Theorem 1 suggests that using 𝑠𝑐𝑜𝑟𝑒∞ will
reduce the probability of a mistake in the next iteration - eventually
reducing the number of wrong pairs in𝑀 .

Proof of Theorem 1:
Eq. 10 in Theorem 1 is equivalent to:

E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝)] > E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝 ′) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝 ′)] (11)

In other words, the expected number of marks that 𝑝 will get from
now on, will be higher than the expected number of marks 𝑝 ′ will
receive. Let us denote by 𝑀𝑡 the map at time 𝑡 , we define Λ(𝑀𝑡 )
to be the number of right pairs in𝑀𝑡 and Ψ(𝑀𝑡 ) be the number of
wrong pairs.
Let 𝑝𝑡 ′ = [𝛼, 𝛽] be a pair inserted to𝑀 at time 𝑡 ′ > 𝑡 :
• If 𝑝𝑡 ′ is a correct pair, 𝛼 and 𝛽 represent the same vertex
𝛾 ∈ 𝑉 (𝑢 and 𝑣 represented by the same vertex 𝑤 ∈ 𝑉 as
well). 𝑝 = [𝑢, 𝑣] gets one mark if there are edges (𝛼,𝑢) ∈ 𝐸1
and (𝛽, 𝑣) ∈ 𝐸2. This requires the edge (𝛾,𝑤) to exist in 𝐸
(which happens with probability 𝑝) and to be sampled in
𝐸1, 𝐸2 (happens with probability 𝑠2). On the other hand, 𝑝 ′
gets a mark if (𝛼,𝑢) ∈ 𝐸1𝑎𝑛𝑑 (𝛽, 𝑣 ′) ∈ 𝐺2. This requires two
different edges to exist in 𝐸 (probability of 𝑝2) and to be
sampled to 𝐸1 and 𝐸2 accordingly (probability of 𝑠2).
• If 𝑝𝑡 ′ is a wrong pair, 𝛼 and 𝛽 are represented by the different
vertices 𝛼 ′, 𝛽 ′ ∈ 𝑉 , (note that 𝑝𝑡 ′ cannot conflict 𝑝 ′). The pair

𝑝 gets one mark if there are edges (𝛼,𝑢) ∈ 𝐸1 and (𝛽, 𝑣) ∈ 𝐸2.
This happens with probability 𝑝2𝑠2. The pair 𝑝 ′ gets one
mark if there are edges (𝛼,𝑢) ∈ 𝐸1 and (𝛽, 𝑣 ′) ∈ 𝐸2, which
also happens with probability 𝑝2𝑠2. In fact, it is possible that
one of the pairs 𝑝𝑡 ′ will have the form [𝑘, 𝑣]. In that case,
𝑝 ′ gets a mark with probability 𝑝2𝑠2 while 𝑝 gets none, as
[𝑢, 𝑣 ′] can never be a neighboring pair of [𝑘, 𝑣 ′].

Let us denote 𝐿𝑡 = 𝑀∞ − 𝑀𝑡 , using the analysis above, one can
compute:

E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝)] ≥ Λ(𝐿𝑡 ) ∗ 𝑠2𝑝 + (Ψ(𝐿𝑡 ) − 1) ∗ 𝑠2𝑝2

(12)

E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝 ′) −𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝 ′)] = Λ(𝐿𝑡 ) ∗𝑠2𝑝2 +Ψ(𝐿𝑡 ) ∗𝑠2𝑝2 . (13)
Combining Eq. 12 and 13, we obtain:

E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝)] ≥ Λ(𝐿𝑡 ) ∗ 𝑠2𝑝 (1 − 𝑝) − 𝑠2𝑝2

+ E[𝑠𝑐𝑜𝑟𝑒∞ (𝑝 ′) − 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑝 ′)] (14)

To prove Eq. 11, it remains to show thatΛ(𝐿𝑡 )∗𝑠2𝑝 (1−𝑝)−𝑠2𝑝2 > 0.
Since we assumed that some correct pair has been inserted to 𝑀
at time 𝑡 > 𝑡 , we have Λ(𝐿𝑡 ) ≥ 1. 𝑝 is the probability of an edge to
exist, and as we only focus on sparse graphs we assume 𝑝 << 0.5,
leading to:

Λ(𝐿𝑡 ) ∗ 𝑠2𝑝 (1 − 𝑝) − 𝑠2𝑝2

= (Λ(𝐿𝑡 ) − 1) ∗ 𝑠2𝑝 (1 − 𝑝) + 𝑠2𝑝 (1 − 𝑝) − 𝑠2𝑝2

= (Λ(𝐿𝑡 ) − 1) ∗ 𝑠2𝑝 (1 − 𝑝) + 𝑠2𝑝 (1 − 2𝑝) > 0 (15)
□

IRMA builds 𝑀𝑖 during the 𝑖-th iteration using ¯𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝) =
𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 (𝑝), 𝑠𝑐𝑜𝑟𝑒𝑖−1,∞ (𝑝). IRMA uses the advantage of each
iteration over the previous one. We have shown the expected ad-
vantage of the first Repairing-Iteration over EWS, so 𝑠𝑐𝑜𝑟𝑒2,∞ (𝑝)
is more accurate than 𝑠𝑐𝑜𝑟𝑒1,∞ (𝑝) on average. The proof above
did not use any assumption on the way the previous marks were
produced. Thus, the same logic applies to all following iterations.
Thus, ¯𝑠𝑐𝑜𝑟𝑒3,𝑡 (𝑝) is expected to be more accurate than ¯𝑠𝑐𝑜𝑟𝑒2,𝑡 (𝑝),
and the same holds for all following iterations.

To test the improvement in accuracy, we computed the F1 score
for all the real-world networks above (Figure 10). Each sub-figure
consists of several runs of IRMA with different sizes of seeds, with
a fixed graph and graphs-overlap (𝑠). Each value is the average of
5 repetitions. The iterations are colored from green to blue. The
lowest values are always of EWS, and the results keeps improving
until they converge.

The first, most noticeable observation is that IRMA indeed gradu-
ally repairs the output map of EWS. In fact, the F1-score results are
a monotonic non-decreasing function of the iterations. Moreover,
the convergence is very rapid, and number of iterations is rarely
more than 5 or 6 until convergence. Finally, the most interesting
thing is that IRMA is less sensitive to the randomness of the process.
EWS often achieves lower performances on a bigger seed due to the
randomness in the process of generating the graphs and choosing
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Figure 9: In the top plot, we present the number of marks at
themoment of insertion into𝑀 during EWS, The𝑋 axis rep-
resents time (i.e., steps of additions of pairs). In the bottom
plot, the same pairs are presented (keeping the same order)
but the 𝑌 axis is the number of marks they had at the end
of the algorithm. The tendency of correct pairs to keep gain-
ingmarks after beingmatched can be clearly seen (Blue line
is higher than Orange line in bottom plot and lower in top
plot). Both graphs have been smoothed by a sliding window
of 50 for clarity.

the seed (see sub-figures a,d,e for such cases). Despite accepting
EWS’s output as an initial map, IRMA exhibits a dependency on
the problem properties (as the input graph and the graphs-overlap)
rather than the output of EWS, and therefore has much smoother
plots. Importantly, the recall (and thus the F1 value) of IRMA, as
presented here, does not rise to 1. Instead, it rises to the maximal
number of vertices that can have at least two marks. However, it
does so even for small seeds.

4.4.2 Stopping condition. While the convergence of IRMA in F1 is
clear from Fig 10, in real life scenarios, the real map is not known,
and F1 cannot be used as a stopping condition. We thus propose
to use 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) (See Eq. 11) as a quality measure for 𝑀𝑖 , and
hence as a stopping condition for the algorithm. We recall that

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) is defined as |{[𝑢, 𝑣] | [𝑢, 𝑣] ∈ 𝐺1, [𝑀 (𝑢), 𝑀 (𝑣)] ∈ 𝐺2}|
i.e., is the number of edges in the common subgraph induced by
the𝑀 . Since correct pairs share more common neighbors in expec-
tation, we expect better maps to have higher𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀). Similarly,
if 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) < (1 + 𝛿)𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖+1), one can assume that 𝑀𝑖+1
is not significantly better than 𝑀𝑖 . We run IRMA and compared
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) to the F1-score of 𝑀𝑖 to test the connection between
them (Figure 11). One can clearly observe that both indices are
converging simultaneously and have very similar dynamics (albeit
different values as expressed by the different 𝑦 axes in Figure 11),
suggesting that𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) can serve as a proxy for the 𝐹1 score.

4.4.3 Computational Complexity of IRMA. For a pair [𝑢, 𝑣] ∈ 𝑀 ,
the number of marks to spread out is𝑑1 (𝑢)∗𝑑2 (𝑣) where𝑑𝑖 (𝑢) is the
degree of 𝑢 ∈ 𝐺𝑖 . Thus, the number of updates to the priority queue
from inserting new pairs to𝑀 is 𝑁 =

∑
[𝑢,𝑣 ] ∈𝑀 𝑑1 (𝑢) ∗ 𝑑2 (𝑣). The

cost of each insertion is proportional to the log of the size of the
priority-queue, which is bound𝑂 ( |𝑉 |2), so the cost of each insertion
is bound by 𝑂 (𝐿𝑜𝑔( |𝑉 |), where |𝑉 | is the number of vertices. The
total number of updates (𝑁 ) is between 𝑁 = 𝑂 ( |𝑉 | ∗ 𝐸 [𝑑]2) and
𝑁 = 𝑂 ( |𝑉 | ∗ 𝐸 [𝑑2]), where 𝑑 is the degree. The first case is for
random matching (i.e., 𝑑 (𝑢) and 𝑑 (𝑣) are independent), and the
second case is for perfect matching 𝑑 (𝑢) = 𝑑 (𝑣). In low variance
degree distributions, both cases are equivalent. However, in power-
low degree distributions, the second case may be much higher
than the first. Thus, one can bound the cost of the algorithm by
𝑂 ( |𝑉 | ∗ 𝑙𝑜𝑔( |𝑉 |) ∗ 𝐸 [𝑑2], but often the bound is tighter - 𝑂 ( |𝐸 |2 ∗
𝑙𝑜𝑔( |𝑉 |)/|𝑉 |). The Repairing-Iteration has a similar cost, since it is
based on the same logic of pulling pairs from the priority queue
and spreading out marks. Note that we avoid the problematic case
in EWS that the expanded seed may be of 𝑂 ( |𝑉 |2), which adds a 𝑉
factor to the cost of spreading marks. In their parallel versions, the
boundary is similar, but in practice the Repairing-Iteration takes
about 30%− 60% the run time of EWS, and as IRMA runs Repairing-
Iteration a few times, it has an overall run time 2-3 times higher
than EWS, but of the same order.

4.5 Expansion to Low Degree Vertices
As explained in the introduction, the Seeded Graph Matching prob-
lem is a variant of the Maximum Common Edges Subgraph (MCES)
problem. However, while in MCES, one tries to find the common
subgraph that contains the maximal possible number of edges, in
our problem the target is to use the edge match as a tool to discover
an a priori existing match. Practically, in the MCES it is always
beneficial to add more vertices to the map - no matter how wrong
their map will be. However, in seeded GM, one tries to maximize
both precision and recall. Hence, at some stage, IRMA does not add
pairs that with high probability are wrong, since those will lower
the precision.

While running both EWS and the repairing iterations, we use a
threshold of two marks to add a candidate pair into𝑀 . This thresh-
old has been set as a trade-off to insert only reliable pairs, yet to
allow the percolation to flow. But since the Repairing-Iteration
method filters wrong matched pairs, it is possible to allow the algo-
rithm to make mistakes in some cases in return to find new correct
pairs. For that reason, we suggest to perform one repairing iteration
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Figure 10: Performances of IRMA: Each sub-figure consists of several runs of IRMA with different sizes of seeds with a fixed
graph and graphs-overlap (𝑠). We show how the iterations gradually converge from ExpandWhenStuck to IRMA (the blue
line).
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Figure 11: Each sub-figure represents 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) and F1-score of a single run of IRMA along the iterations. One can note that
both indices converge simultaneously, making𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀) a perfect halt condition.

with a threshold of one mark, after IRMA has converged. Then,
we run regular repairing iterations again to gradually restore the
precision.

As explained above in the methods section 3.5.1, since repairing
iterations are used to filter out a massive amount of wrong pairs,
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) is no longer a good condition for testing the conver-
gence. We thus tested three possible break conditions to the second
stage of IRMA:

(1) Let |𝑀𝑖 | be be number of pairs in 𝑀𝑖 , where 𝑀𝑖 is the set
of matched pairs at the end of the 𝑖 iteration. Similarly, let
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) be the total number of edges among members

of𝑀𝑖 present in both 𝐺1 and 𝐺2. The quality of a bijection
can be defined through𝑊𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 )/|𝑀𝑖 |.

(2) As the target is to scale 𝑀 down, |𝑀 | might indicate if the
second stage has ended. We can use the condition |𝑀𝑖 | ≥
(1 − 𝛿) ∗ |𝑀𝑖−1 | to avoid many redundant iterations.

(3) Empirically after a few iterations there is no significant im-
provement from𝑀𝑖 to𝑀𝑖+1. A simple solution might be to
use a constant number of iterations.

We computed the difference in accuracy along snapshots vs these
three different measures (Figure 12). Sub-plots a and b represent the
difference in precision as a function of the difference in |𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑖 ) |/|𝑀𝑖 |
and |𝑀𝑖 |, respectively. A clear correlation between the measures
can be seen in sub-plots A and B, yet the variance around the origin



(i.e., when IRMA converges) is relatively large. Instead, sub-plot C
indicates that the most reliable prediction to the convergence of
precision is the number of iteration. We thus propose that as the
default stopping criteria after the expansion iteration.

We used these additional iterations on the runs of IRMA from
the previous section and received a small but consistent improve-
ment over IRMA, that is typically bigger on relatively small seeds
(except for cases when IRMA failed). We tested the precision, recall
and F1-score along IRMA’s iterations on different graphs (Figure
13). As follows from Eq. ??, the precision is always higher than
recall, and the relation between them is equal to the ratio between
𝑅 and𝑀 . Both recall and precision are monotonic non decreasing
up to the expansion/exploration iteration. The drop in precision
together with the pick in recall are caused by the exploration itera-
tion, inserting many pairs with low level of certainty. After that, the
Repairing-Iteration method is activated again to restore precision,
and successfully does so in a few iterations. Note that while pre-
cision is fully restored (and some times even improves), the recall
stays higher than before the exploration iteration, as some of the
correct new matches lead to an unexplored part of the graphs and
gain enough marks for later iterations.

4.6 Parallel Solution
In section 3.6, we introduced the parallel version to EWS. The main
idea is to split the algorithm into epochs such that marks are spread
out only between the epochs, allowing parallel spreading. Using
the same concept, we developed a parallel version to Repairing-
Iteration in which 𝑀 is rebuilt based only on the marks of the
former iteration. The parallel version of IRMA starts by running
Parallel-EWS and then performs iterations of Parallel-Repairing-
Iteration.

When comparing (Fig. 14) the parallel-EWS, Parallel-IRMA and
regular IRMA (both use exploring iteration). The parallel-IRMA has
much better precision and recall than the Parallel-EWS. In sub-plot
E, one can see an extreme case where Parallel-IRMA with a seed
of 25 pairs is more accurate than Parallel-EWS with 400 pairs in
the seed. Often, the Parallel-IRMA and the standard IRMA have
very similar recall and precision, making the parallel IRMA an ex-
cellent trade-off between run-time and performances. Note that
the parallel IRMA has the same run time as (parallel) EWS up to
multiplication by a small constant, and is much faster, yet much
more accurate than the non-parallel EWS.

5 DISCUSSION
We have here extended the EWS seeded-GM algorithm to include
iterative corrections of the matching. The EWS is greedy in the
sense that once a pair has been matched, it cannot be changed.
The EWS is based on the spread of marks to common neighbors of
previously matched pairs.

We have here shown that real matches tend to accumulate more
marks than wrong ones. As such, one can repair at the end of each
iteration the paired matches, and repeat the iteration. The resulting
iterative algorithm is named IRMA, which has a better accuracy
than the current state-of-the-art GM algorithms.

While in𝐺 (𝑛, 𝑝) graphs existing seeded GM algorithms seems
to get a very high accuracy even for a small seed, the same does
not hold for scale-free networks, as are most real-world networks.
There are two main reasons for the failure of seeded GM in scale
free networks: A) pairs of very high degree vertices (that are not real
pairs) easily accumulate wrong marks. In a greedy approach, high-
degree vertices will receive a lot of marks from common neighbors,
since they tend to have a lot of random common neighbors. B) Very
low degree vertices have few neighbors, and as such receive very
few marks.

IRMA solves the first problem by iteratively fixing errors. How-
ever, a simple iterative correction cannot solve the second problem.
To address the second problem, an expansion iteration was added,
where IRMA accumulates a large number of low-degree pairs with
a large fraction of wrong-pairs. This is then followed by multiple
correction iterations to improve the accuracy, while maintaining a
high recall.

Each iteration of IRMA is a full iteration of EWS, and typical
applications require 5-10 iterations. The run time could be expected
to be 5-10 time longer than EWS. However, in practice, the gain
in accuracy of IRMA is much higher than the accuracy difference
between the parallel and iterative versions of EWS. As such IRMA
can be used with the parallel version of EWS, and be as fast if not
faster than regular EWS with higher precision and recall.

We have tested alternative methods to fix wrong pairs in each
iteration, including the analysis of negative marks (marks from
contradicting neighbors), or the relation between marks and de-
gree. However, eventually, the simplest approach to accumulate
marks, even after a pair was selected, ended up being the one best
improving the precision and recall.

The extension of seeded GM algorithms to scale-free network
with limited overlap (low values of 𝑠) is essential for their appli-
cation in real-world networks. However, the model we have used
here for the generation of partially overlapping graphs (random
sampling from a larger common graph), may not represent the real
difference between networks. Thus, an important extension of the
current method would be to test it on different partially overlapping
networks models.

Another important caveat of IRMA is that in the current version
it is applied to unweighted undirected graphs. The extension to
directed and weighted graphs is straightforward. However, this
would add multiple free parameters to the analysis (such as the
difference between the in and out degree distributions, and the
weight distribution). We have thus preferred to focus on the simpler
case, leaving the more general models as future extensions.
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5 Discussion

We have here extended the EWS seeded-GM algorithm to include iterative corrections of the match-
ing. The EWS is greedy in the sense that once a pair has been matched, it cannot be changed. The
EWS is based on the spread of marks to common neighbors of previously matched pairs.

We have here shown that real matches tend to accumulate more marks than wrong ones. As
such, one can repair at the end of each iteration the paired matches, and repeat the iteration.
The resulting iterative algorithm is named IRMA, which has a better accuracy than the current
state-of-the-art GM algorithms.

While in G(n, p) graphs existing seeded GM algorithms seems to get a very high accuracy even
for a small seed, the same does not hold for scale-free networks, as are most real-world networks.
There are two main reasons for the failure of seeded GM in scale free networks: A) pairs of very
high degree vertices (that are not real pairs) easily accumulate wrong marks. In a greedy approach,
high-degree vertices will receive a lot of marks from common neighbors, since they tend to have
a lot of random common neighbors. B) Very low degree vertices have few neighbors, and as such
receive very few marks.

IRMA solves the first problem by iteratively fixing errors. However, a simple iterative correction
cannot solve the second problem. To address the second problem, an expansion iteration was added,
where IRMA accumulates a large number of low-degree pairs with a large fraction of wrong-pairs.
This is then followed by multiple correction iterations to improve the accuracy, while maintaining
a high recall.

Each iteration of IRMA is a full iteration of EWS, and typical applications require 5-10 iterations.
The run time could be expected to be 5-10 time longer than EWS. However, in practice, the gain
in accuracy of IRMA is much higher than the accuracy difference between the parallel and iterative
versions of EWS. As such IRMA can be used with the parallel version of EWS, and be as fast if
not faster than regular EWS with higher precision and recall.

We have tested alternative methods to fix wrong pairs in each iteration, including the analysis
of negative marks (marks from contradicting neighbors), or the relation between marks and degree.
However, eventually, the simplest approach to accumulate marks, even after a pair was selected,
ended up being the one best improving the precision and recall.

The extension of seeded GM algorithms to scale-free network with limited overlap (low values
of s) is essential for their application in real-world networks. However, the model we have used
here for the generation of partially overlapping graphs (random sampling from a larger common
graph), may not represent the real difference between networks. Thus, an important extension of
the current method would be to test it on different partially overlapping networks models.

Another important caveat of IRMA is that in the current version it is applied to unweighted
undirected graphs. The extension to directed and weighted graphs is straightforward. However, this
would add multiple free parameters to the analysis (such as the difference between the in and out
degree distributions, and the weight distribution). We have thus preferred to focus on the simpler
case, leaving the more general models as future extensions.
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 ריצקת
 
 ןיב )יופימ( המאתה עצבל ךרוצ שיש ךכ םיפרג ינש םינותנ םיפרג לש המאתהה תייעבב
 דואמ םינווגמ היעבל םישומישה .םהלש יגולופוטה הנבמה ךמס לע םיפרגה ידוקדוק
 ןווגמב עיפוהל הלוכי היעבה .דועו הנומת יוהיז ,תופורתה תיישעת לש םימוחתמ םיעיגמו

 ןיערג הנוכמה ףסונ טלק וא ףסונ עדימ תוקפסמש םיפרגה ידוקדוק לע תויוות ומכ םינפוא
 םיפרג םע םיבתכתמ היעבל םינוש םימתירוגלא .םידוקדק לש םימאתומ תוגוז ליכמש
 םידקמתמ ונא ,וז הדובעב .םהלש הצירה ןמז תויכוביסב היצקנופכ .םינוש לדוג ירדסב
 םיחינמ ונא .םידוקדק ינוילימ לש םיפרג םע דדומתהל לגוסמש יראניל-ודואספ ןורתפב
 .םיפרגה ידוקדוק לע תויוותב שומיש םישוע אלו ןיערג לש טלק

 .יתגרדה עופעפ איה םיפרג תמאתהל הציר ןמזב רתויב תינוכסחהו הליעיה הטישה
 םהלש הביבסה לע עדי רובצל ידכ םיפוממה םידוקדקה תוגוזב םישמתשמ ונא וז הטישב
 שמשמ הפוממה גוזה .םהילא ךומסב םקוממש ףסונ םידוקדק גוז םיפממ ךכו םיפרגב
 הטישה השעמל .יתרזח ןפואב תוגוז דועו דוע ףיסוהל ןתינש ךכ ,הביבסהו עדיה תבחרהל
 .םתירוגלאה ךלהמב הכ דע ונרבצש יקלחה עדיה לע בלש לכב תססבתמ

 IRMA (Iterative Repair for graph םתירוגלא תא וז הדובעב םיגיצמ ונא
MAtching). עוציב אוה ולש יזכרמה שודיחהו ,עופעפ לש הטיש לע ססבתמ םתירוגלאה 

 לש הצרה ידי לע ליחתמ םתירוגלאה .יופימה לש יתגרדה ןוקיתל תורזוח תויצרטיא
 ,יופימה תיינב תמלשה רחאל .עופעפ תטיש לע ססובמש םייק םיפרג תמאתה םתירוגלא
 רוציל ידכ ,םתירוגלאה ךלהמב םיפרגה הנבמ לע ונרבצש ללוכה עדיב םישמתשמ ונא
 קיודמ יופימ םילבקמ ונא ,רתוי םלש וניה ונססבתה וילע עדיהש ןוויכ .ןיטולחל שדח יופימ
 תודוא רתוי הנימא בצמ תנומת לבקל ידכ שדחה יופימב שמתשהל ןתינ תעכ .רתוי

  .הלילח רזוחו ,רתוי קיודמו שדח יופימ לש היינב רשפאמש המ ,םיפרגה
 תדרוי עצבמ םתירוגלאהש תואיגשה רפסמ תלחות יכ ונחכוה הדובעה ךלהמב

 ןיב יתועמשמ רופיש ונאצמ ונעציבש םייוסינב .תוסנכתה ידכל דע היצרטיאל היצרטיאמ
 תויצרטיאה רפסמ .םינוקיתה רחאלש יפוסה טלפל דעו םתירוגלאה לש יתלחתהה יופימה
 רשפאמ םתירוגלאהו ההז תיטוטפמיסא תראשנ הצירה ןמז תויכוביסש ךכ ,ןטק עובק אוה
 תרשפאמה ןורתפה לש תיליבקמ הסרג ונשמימ ,ףסונב .רתויב םילודגה םיפרגה לע הציר
 .ןורתפה תוכיאב החינז העיגפ תרומת הצירה ןמזב יתועמשמ רופיש

 



 

בע םיעדמל הטלוקפה ,יטידור םעיל ׳פורפו ןוזול םרוי ׳פורפ לש םתכרדהב התשענ וז הדו
. ןליא - רב תטיסרבינוא ,םיקיודמ  
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